References
1
Römpp Lexikon Naturstoffe
Steglich W.
Fugmann B.
Lang-Fugmann S.
Thieme;
Stuttgart:
1997.
2a
Ezaki N.
Shomura T.
Koyama M.
Niwa T.
Kojima M.
Inouye S.
Niida T.
J.
Antibiot.
1981,
34:
1363
2b
Kaneda M.
Nakamura S.
Ezaki N.
Iitaka Y.
J. Antibiot.
1981,
34:
1366
2c
Ezaki N.
Koyama M.
Shomura T.
Tsuruoka T.
Inouye S.
J.
Antibiot.
1983,
36:
1263
2d
Carter GT.
Nietsche JA.
Goodman JJ.
Torrey MJ.
Dunne TS.
Siegel MM.
Borders DB.
J. Chem.
Soc., Chem. Commun.
1989,
1271
3a
Müller K.
Leukel P.
Ziereis K.
Gawlik I.
J.
Med. Chem.
1994,
37:
1660
3b
Barton DHR.
Challis JA.
Magnus PD.
Marshall JP.
J. Chem. Soc. C
1971,
2241
4a
Buchta E.
Egger H.
Chem.
Ber.
1957,
90:
2760
4b
Shiue J.-S.
Lin M.-H.
Fang J.-M.
J.
Org. Chem.
1997,
62:
4643
4c
Chan TH.
Brownbridge P.
J. Am.
Chem. Soc.
1980,
102:
3534
4d
Lee SD.
Chan TH.
Tetrahedron
1984,
40:
3611
4e
Kang GJ.
Chan TH.
J. Org.
Chem.
1985,
50:
452
4f For the synthesis of salicylic derivatives
by reactions of 1,3-dicarbonyl dianions, see for example: Harris TM.
Wittek PJ.
J.
Am. Chem. Soc.
1975,
97:
3270
4g For the reaction of dimethyl
1,3-acetonedicarboxylate with alkynals and alkynones, see: Covarrubias-Zúniga A.
Ríos-Barrios E.
J.
Org. Chem.
1997,
62:
5688 ;
and references cited therein
For reviews of domino reactions,
see:
5a
Tietze LF.
Beifuss U.
Angew. Chem.,
Int. Ed. Engl.
1993,
32:
131 ; Angew. Chem. 1993, 105, 137
5b
Tietze LF.
Chem. Rev.
1996,
96:
115
For related cyclization reactions
of 3-formylchromones, see:
6a
Nohara A.
Umetani T.
Sanno Y.
Tetrahedron
1974,
30:
3553
6b
Jones WD.
Albrecht WL.
J.
Org. Chem.
1976,
41:
706
6c The cyclization of 3-formyl-chromones
with formamidine and amidines afforded 5-(2-hydroxybenzoyl)-pyrimidines: Löwe W.
Synthesis
1976,
274
6d See also: Petersen U.
Heitzer H.
Liebigs
Ann. Chem.
1976,
1663
6e With enamines: Heber D.
Synthesis
1978,
691
6f With hydrazines: Eiden F.
Haverland H.
Arch.
Pharm. (Weinheim, Ger.)
1968,
301:
819
6g See also: Ghosh CK.
Mukhopadhyay KK.
J.
Ind. Chem. Soc.
1978,
55:
386
6h With H2NOH·HCl: Hsung RP.
Zificsak CA.
Wei L.-L.
Zehnder LR.
Park F.
Kim M.
Tran T.-TT.
J.
Org. Chem.
1999,
64:
8736
6i With o-phenylenediamine: Ghosh CK.
Khan S.
Synthesis
1980,
701
6j For conversions into pyrroles
and thiophenes: Fitton AO.
Frost JR.
Suschitzky H.
Hougton PG.
Synthesis
1977,
133
6k For a review on 3-formylchromones,
see: Ellis GP.
Heterocyclic Compounds
Vol.
35:
Weisberger A.
Wiley-Interscience;
New
York:
1977.
p.921
For phosphorane 3b,
see:
7a
Hatanaka M.
Tanaka Y.
Ueda I.
Tetrahedron
Lett.
1995,
3719
7b
Banwell MG.
Cameron JM.
Tetrahedron
Lett.
1996,
525
7c
Hatanaka M.
Ishida A.
Tanaka Y.
Ueda I.
Tetrahedron Lett.
1996,
401
7d
Ceccarelli S.
Piarulli U.
Gennari C.
Tetrahedron Lett.
1999,
153
8a
Ghosh CK.
Khan S.
Synthesis
1981,
903
8b
Hass G.
Stanton JL.
von Sprecher A.
Wenk P.
J. Heterocycl. Chem.
1981,
18:
607
8c
Prousek J.
Collect.
Czech. Chem. Commun.
1991,
1361
8d
Ghosh CK.
Bandyopadhyay C.
Biswas S.
Chakravarty AK.
Ind.
J. Chem., Sect. B
1990,
29:
814
8e
Bandyopadhyay C.
Sur KR.
Patra R.
J.
Chem. Res., Synop.
1998,
12:
802
9
Representative
Experimental Procedure: A THF suspension (5 mL) of NaH (78
mg, 3.25 mmol) and 3b (556 mg, 1.43 mmol)
was stirred under nitrogen atmosphere at 0 °C
for 30 min. A THF solution (10 mL) of 2a (190
mg, 1.1 mmol) was added and the solution was stirred for 60 min
at 0 °C. The reaction mixture was refluxed for
24 h, cooled and subsequently stirred for 12 h at 20 °C.
To the mixture was added diethyl ether (30 mL), an aqueous solution
of HCl (5 mL, 1 M) and a saturated solution of NaCl. The aqueous layer
was separated and extracted with CH2Cl2 (3 × 10
mL). The combined organic layers were dried (MgSO4),
filtered and the solvent of the filtrate was removed in vacuo. The residue
was purified by column chromatography (silica gel, diethyl ether/petroleum
ether = 1:20) to give 4b (52%)
as a yellow solid. Spectroscopic data of 4b: 1H
NMR (CDCl3, 250 MHz): δ = 1.42
(t, 3
J = 7
Hz, 3 H, CH3), 4.45 (q, 3
J = 7 Hz,
2 H, OCH
2CH3),
6.91 (dd, 3
J
1 = 7
Hz, 3
J
2 = 8
Hz, 1 H, Ar), 7.08 (d, 3
J = 8
Hz, 1 H, Ar), 7.10 (d, 3
J = 8
Hz, 1 H, Ar), 7.53 (dd, 3
J
1 = 7
Hz, 3
J
2 = 8
Hz, 1 H, Ar), 7.59 (d, 3
J = 8
Hz, 1 H, Ar), 7.84 (d, 3
J = 8
Hz, 1 H, Ar), 8.30 (s, 1 H, Ar), 11.34 (s, 1 H, OH), 11.87 (s, 1
H, OH). 13C NMR (CDCl3,
50 MHz): δ = 14.15 (CH3),
62.07 (CH2), 112.47, 119.03, 129.00 (C, Ar, ortho and para to
OH), 117.74, 118.51, 118.70 (CH, Ar, ortho and para to OH), 132.36, 132.95, 136.18,
136.59 (CH, Ar, meta to OH), 163.00,
164.70, 169.61 (C, C-OH, CO2Et), 199.12 (C,
CO). IR (KBr): 3178 (w), 3059 (w), 2987 (w), 2933 (w), 1683 (s),
1629 (s), 1589 (s), 1467 (m), 1444 (m), 1397 (m), 1343 (s), 1293
(s), 1262 (s), 1242 (s), 1176 (m), 1084 (m) cm-1.
MS (70 eV): m/z (%) = 286
(100) [M+], 121(94). Anal.
Calcd for C16H14O5: C, 67.31; H,
4.93. Found: C, 66.88; H, 5.18. All compounds gave satisfactory
spectroscopic and analytical and/or high resolution mass
data.