Abstract
The dianions derived from γ-allyloxy-β-enaminoesters undergo
a [2,3]-Wittig sigmatropic rearrangement leading
to γ-hydroxy-β-enaminoester derivatives, which
can be subsequently lactonized to the corresponding 4-aminofuran-2(5H)-ones.
Key words
β-ketoesters - β-enaminoesters - lithiation - Wittig rearrangement - lactones
References
1a
Effenberger F.
Syed J.
Tetrahedron:
Asymmetry
1998,
9:
817
1b
Bühler H.
Bayer A.
Effenberger F.
Chem.-Eur. J.
2000,
6:
2564 ; and references cited therein
2a
Hiyama T.
Oishi H.
Saimoto H.
Tetrahedron Lett.
1985,
26:
2459
2b
Hiyama T.
Oishi H.
Suetsugu Y.
Nishide K.
Saimoto H.
Bull.
Chem. Soc. Jpn.
1987,
60:
2139
2c
Syed J.
Förster S.
Effenberger F.
Tetrahedron: Asymmetry
1998,
9:
805
2d
Wang J.
Jiang X.
Chen M.
Ge Z.
Hu Y.
Hu H.
J.
Chem. Soc., Perkin Trans. 1
2001,
66 ;
and references cited in these articles
3a
Greenhill JV.
Ramli M.
Tomassini T.
J. Chem. Soc., Perkin Trans.
1
1975,
588
3b
Boosen K.-J.
Helv.
Chim. Acta
1977,
60:
1256
3c
Schmidt RR.
Talbiersky J.
Angew.
Chem., Int. Ed. Engl.
1978,
17:
204
3d
Momose T.
Toyooka N.
Nishi T.
Takeuchi Y.
Heterocycles
1988,
27:
1907
3e
Martin MR.
Mateo AI.
Tetrahedron: Asymmetry
1994,
5:
1385
3f
Veronese AC.
Callegari R.
Basato M.
Valle G.
J. Chem. Soc.,
Perkin Trans. 1
1994,
1779
4a
Nishide K.
Aramata A.
Kamanaka T.
Inoue T.
Node M.
Tetrahedron
1994,
50:
8337
4b
Schlessinger RH.
Iwanowicz EJ.
Springer JP.
Tetrahedron Lett.
1988,
29:
1489
4c
Schlessinger RH.
Mjalli AMM.
Adams AD.
Springer JP.
Hoogsteen K.
J. Org.
Chem.
1992,
57:
2992
4d
Schlessinger RH.
Pettus TRR.
Springer JP.
Hoogsteen K.
J.
Org. Chem.
1994,
59:
3246
4e
Schlessinger RH.
Li Y.-J.
J. Am. Chem.
Soc.
1996,
118:
3301
4f
Dankwardt SM.
Dankwardt JW.
Schlessinger RH.
Tetrahedron Lett.
1998,
39:
4971
4g
Dankwardt JW.
Dankwardt SM.
Schlessinger RH.
Tetrahedron Lett.
1998,
39:
4979
5a
Paulvannan K.
Stille JR.
J.
Org. Chem.
1994,
59:
1613
5b
Cook GR.
Behloz LG.
Stille JR.
J. Org. Chem.
1994,
59:
3575
5c
Hitotsuyanagi Y.
Kobayashi M.
Fukuyo M.
Takeya K.
Itokawa H.
Tetrahedron
Lett.
1997,
38:
8295
6
Pévet I.
Meyer C.
Cossy J.
Tetrahedron
Lett.
2001,
42:
5215
7a
Aberhart DJ.
Lin H.-J.
J.
Org. Chem.
1981,
46:
3749
7b
Shieh T.-L.
Lin C.-T.
McKenzie AT.
Byrn SR.
J. Org. Chem.
1983,
48:
3103
7c
Melillo DG.
Cvetovich RJ.
Ryan KM.
Sletzinger M.
J.
Org. Chem.
1986,
51:
1498
7d
Hiyama T.
Kobayashi K.
Nishide K.
Bull. Chem.
Soc. Jpn.
1987,
60:
2127
7e
Pawlak JM.
Khau VV.
Hutchison DR.
Martinelli MJ.
J.
Org. Chem.
1996,
61:
9055
7f
Soloshonok VA.
Kukhar VP.
Tetrahedron
1996,
52:
6953
7g
Cavé C.
Gassama A.
Mahuteau J.
d’Angelo J.
Riche C.
Tetrahedron
Lett.
1997,
38:
4773
Although the deprotonation of tertiary β-enaminoesters
at the γ-position (including N,N-disubstituted 4-aminofuran-2-(5H)-ones)4 is well-documented,
the double metalation of primary or secondary ones has not been
reported to our knowledge. See:
8a
Schlessinger RH.
Iwanowicz EJ.
Springer JP.
J. Org. Chem.
1986,
51:
3073
8b
Schlessinger RH.
Li Y.-J.
Von Langen DJ.
J. Org. Chem.
1996,
61:
3226
8c
Schlessinger RH.
Gillman KW.
Tetrahedron
Lett.
1996,
37:
1331
8d
Dankwardt JW.
Dankwardt SM.
Schlessinger RH.
Tetrahedron Lett.
1998,
39:
4983
8e
Schlessinger RH.
Pettus LH.
J.
Org. Chem.
1998,
63:
9089
8f
Schlessinger RH.
Gillman KW.
Tetrahedron
Lett.
1999,
40:
1257
9 Due to their moderate stability on
silica gel, the β-enamino-esters 5a-c and 8 were conveniently
engaged in the rearrangement step without further purification
and therefore an excess of n-BuLi (4
equiv) was routinely used in order to ensure an efficient metalation
process of these crude compounds at -78 °C.
The nucleophilic addition of
n-BuLi
to the ester carbonyl group of lithiated β-enamino-esters,
and/or N,O-dilithiated β-enaminoesters
arising from the [2,3]-sigmatropic rearrangement,
has never been observed as a side reaction. The fact that these
species may be considered as vinylogous lithiated carbamates probably accounts
for their low reactivity towards n-BuLi.
10 Due to the complexity of the NMR spectra
of the mixture of 6c and 6′c (presence
of Z/E isomers
in equilibrium for each diastereomer), the diastereomeric ratio
(6c/6′c)
was evaluated by GC-MS after calibration with authentic samples
prepared by condensation of (R)-α-methyl-benzylamine
with the γ-trimethylsilyloxy-β-ketoester 10 resulting from the [2,3]-Wittig
rearrangement of 1 and subsequent silylation
with TMSCl (Scheme
[8]
).
[6]
11 The diastereomeric ratio (7c/7′c)was
determined by 1H NMR. These two diastereomers
were separated and hydrolyzed to the corresponding enantiomeric
tetronic acids (+)-11 and (-)-11 respectively. The (5R)
absolute configuration of tetronic acid (+)-11 was
assigned after hydrogenation, by correlation with the known optically
pure (5R)-5-propyltetronic acid (+)-12 (Scheme
[9]
).
[1a]
General reviews on the [2,3]-Wittig
rearrangement:
12a
Nakai T.
Mikami K.
Chem. Rev.
1986,
86:
885
12b
Marshall JA. In
Comprehensive Organic
Chemistry
Vol. 3:
Trost BM.
Fleming I.
Pergamon
Press;
Oxford:
1991.
p.975-1014
12c
Brückner R. In
Comprehensive Organic
Chemistry
Vol. 6:
Trost BM.
Fleming I.
Pergamon
Press;
Oxford:
1991.
p.873-907
12d
Kallmerten J. In
Houben-Weyl, Methods of Organic Chemistry
Vol.
E 21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme-Verlag;
Stuttgart:
1995.
p.3757-3809
13a
Takahashi O.
Mikami K.
Nakai T.
Chem. Lett.
1987,
69
13b
Sudo A.
Hashimoto Y.
Kimoto H.
Hayashi K.
Saigo K.
Tetrahedron:
Asymmetry
1994,
5:
1333
13c
Enders D.
Backhaus D.
Synlett
1995,
631
13d
Enders D.
Backhaus D.
Runsink J.
Tetrahedron
1996,
52:
1503
13e
Enders D.
Bartsch M.
Runsink J.
Synthesis
1999,
243
13f
Kress MH.
Yang C.
Yasuda N.
Grabowski EJJ.
Tetrahedron
Lett.
1997,
38:
2633
13g
Hiersemann M.
Lauterbach C.
Pollex A.
Eur.
J. Org. Chem.
1999,
2713
13h
Hiersemann M.
Tetrahedron
1999,
55:
2625