References
For recent olefin metathesis reviews
see:
1a
Trnka TM.
Grubbs RH.
Acc.
Chem. Res.
2001,
34:
18
1b
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012 ; Angew. Chem. 2000, 112, 3140
1c
Roy R.
Das SK.
Chem. Commun.
2000,
519
1d
Philips AJ.
Abell AD.
Aldrichimica
Acta
1999,
32:
75
1e
Armstrong SK.
J. Chem. Soc., Perkin Trans. 1
1998,
371
1f
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
1g
Ivin KJ.
J. Mol. Catal. A: Chem.
1998,
133:
1
1h
Alkene Metathesis
in Organic Synthesis
Fürstner A.
Springer;
Berlin:
1998.
1i
Randall ML.
Snapper ML.
J.
Mol. Catal. A: Chem.
1998,
133:
29
1j
Schuster M.
Blechert S.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2036 ; Angew. Chem. 1997, 109, 2124
2a
Randl S.
Lukas N.
Connon S.
Blechert S.
Adv. Synth. Catal.
2002,
344:
1
2b
Ovaa H.
Stapper C.
van der Marel GA.
Overkleeft HS.
van Boom JH.
Blechert S.
Tetrahedron
2002,
58:
7503
2c
Zaminer J.
Stapper C.
Blechert S.
Tetrahedron
Lett.
2002,
43:
6739
2d
Stapper C.
Blechert S.
Eur. J. Org. Chem.
2002,
16:
2855
2e
Stapper C.
Blechert S.
J. Org. Chem.
2002,
67:
6456
2f
Buschmann N.
Rückert A.
Blechert S.
J.
Org. Chem.
2002,
67:
4325
2g
Banti D.
North M.
Adv. Synth. Catal.
2002,
344:
694
2h
Stragies R.
Blechert S.
J. Am. Chem. Soc.
2000,
122:
9584
2i
Voigtmann U.
Blechert S.
Synthesis
2000,
893
2j
Ovaa H.
Stragies R.
van der Marel GA.
van Boom JH.
Blechert S.
Chem. Commun.
2000,
1501
2k
Fürstner A.
Szillat H.
Stelzer F.
J. Am. Chem. Soc.
2000,
122:
6785
2l
Stragies R.
Blechert S.
Tetrahedron
1999,
55:
8179
2m
Adams J.
Ford JG.
Stamatos PJ.
Hoveyda AH.
J.
Org. Chem.
1999,
64:
9690
2n
Fürstner A.
Szillat H.
Gabor B.
Mynott R.
J. Am. Chem.
Soc.
1998,
120:
8305
2o
Chatani N.
Furukawa N.
Sakurai H.
Murai S.
Organometallics
1996,
15:
901
2p
Zuercher WJ.
Hashimoto M.
Grubbs RH.
J. Am. Chem. Soc.
1996,
18:
6634
3a
Kitamura T.
Sato Y.
Mori M.
Chem. Commun.
2001,
1258
3b
Mori M.
Kitamura T.
Sato Y.
Synthesis
2001,
654
3c
Stragies R.
Voigtmann U.
Blechert S.
Tetrahedron
Lett.
2000,
41:
5465
3d
Mori M.
Kitamura T.
Sakakibara N.
Sato Y.
Org. Lett.
2000,
2:
543
3e
Smulik JA.
Diver ST.
J.
Org. Chem.
2000,
65:
1788
3f
Smulik JA.
Diver ST.
Org.
Lett.
2000,
2:
2271
3g
Renaud J.
Graf C.-D.
Oberer L.
Angew.
Chem. Int. Ed.
2000,
39:
3101
3h
Stragies R.
Schuster M.
Blechert S.
Chem.
Commun.
1999,
237
3i
Schürer SC.
Blechert S.
Chem.
Commun.
1999,
1203
3j
Schürer SC.
Blechert S.
Tetrahedron
Lett.
1999,
40:
1877
3k
Schürer SC.
Blechert S.
Synlett
1999,
1879
3l
Kinoshita A.
Sakakibara N.
Mori M.
Tetrahedron
1999,
12388
3m
Mori M. In Topics
in Organometallic Chemistry
Vol. 1:
Fürstner A.
Springer-Verlag;
Berlin,
Heidelberg:
1998.
p.133
3n
Schürer SC.
Blechert S.
Synlett
1998,
166
3o
Schuster M.
Blechert S.
Tetrahedron Lett.
1998,
39:
2295
3p
Mori M.
Sakakibara N.
Kinoshita H.
J.
Org. Chem.
1998,
63:
6082
4a
Kitamura T.
Mori M.
Org.
Lett.
2001,
3:
1161
4b
Bentz D.
Laschat S.
Synthesis
2000,
12:
1766
5a
Schenck GO.
Dunlap DE.
Angew. Chem.
1956,
68:
248
5b
Laumen K.
Reimerdes EH.
Schneider M.
Tetrahedron
Lett.
1985,
26:
407
5c
Laumen K.
Reimerdes EH.
Schneider M.
Tetrahedron
Lett.
1985,
4:
407
5d
Kaneko C.
Sugimoto A.
Tanaka S.
Synthesis
1974,
876
5e
Dirkzwanger H.
Nienstad TJ.
van Wijk AM.
van Bekkum H.
Recl.
Trav. Chim. Pays-Bas
1973,
35
5f
Bis SJ.
Whitaker DT.
Johnson CR.
Tetrahedron: Asymmetry
1993,
4:
875
5g
Johnson CR.
Bis SJ.
Tetrahedron
Lett.
1992,
33:
7287
5h
Adam W.
Bloodworth AJ.
Eggelte HJ.
Loveitt ME.
Angew. Chem.
1978,
3:
216
5i
Mitsunobu O.
Synthesis
1981,
1
5j
Dess DB.
Martin JC.
J.
Am. Chem. Soc.
1991,
113:
7277
6a
Schwab P.
Grubbs RH.
Ziller JW.
J. Am. Chem. Soc.
1996,
118:
100
6b
Scholl M.
Ding S.
Lee CW.
Grubbs RH.
Org. Lett.
1999,
1:
953
Other active NHC-based catalysts:
7a
Huang J.
Stevens ED.
Nolan SP.
Petersen JL.
J.
Am. Chem. Soc.
1999,
121:
2674
7b
Ackermann L.
Fürstner A.
Weskamp T.
Kohl FJ.
Herrmann WA.
Tetrahedron Lett.
1999,
40:
4787
7c
Scholl M.
Trnka TM.
Morgan JP.
Grubbs RH.
Tetrahedron
Lett.
1999,
40:
2247
8 In a 10 mL flask a solution of 11 (25 mg, 0.075 mmol) and catalyst 15 (6.4 mg, 10 mol%) in CH2Cl2 (0.05
molar) under N2 was cooled with liquid nitrogen. To this
cooled solution, 50 mL of CH2CH2 was added,
which condensed rapidly and the sealed flask was stirred at 80 °C
for 2 h. After the addition of an excess of ethyl vinyl ether the
reaction mixture was stirred for an additional 60 h at 80 °C.
The solvent was removed in vacuo and the residue was purified by
flash column chromatography on silica gel (hexane/MTBE
2:1) to yield 14.9 mg of 17b (55%)
as a light yellow oil.
9a
Kitamura T.
Sato Y.
Mori M.
Chem. Commun.
2001,
1258
9b
Kitamura T.
Sato Y.
Mori M.
Adv.
Synth. Catal.
2002,
344:
678
10 The configuration of 18b was
determinated by X-ray crystallography.
11 After following conversion in these
reactions by 1H NMR spectroscopy, it was found
that 16a-19a decompose
steadily to numerous unidentifiable products under the reaction conditions,
in the case of the reaction of 10, 12 and 13, levels of 16a, 18a and 19a were typically in the range of 20-40% after
2 h, whereas 11 had undergone quantitative
conversion at this time. In an attempt to enhance the yield, temperature ranges
(between r.t. and 120 °C) were used as well as
a Lewis acid (e.g. MeAlCl2) that was added at the beginning of
the reaction and after 2 h, but proved to be unsuccessful. It is
noteworthy that 16b-19b are perfectly stable and show no signs
of decomposition even after extended reaction times.
12a The
geometries of the reactants, products and transition states were
optimised using the AM1 semi-empirical method as implemented in
Gaussian 98.12b Single point calculations were
performed using these geometries with the resolution-of-identity
method and the BP86 density functional, as implemented in Turbomol.12c The
TZV basis sets of Ahlrichs
[12d]
were
used for all atoms with polarisation functions for the heavy atoms.
It was found that the relative activation energy of 16a, 17a and 18a was
72 kJmol-1, 47 kJmol-1 and
61 kJmol-1 respectively. This supports
the argument that shorter chain lengths results in a less accessible
transition state.
12b
Frisch MJ.
Trucks GW.
Schlegel HB.
Scuseria GE.
Robb MA.
Cheeseman JR.
Zakrzewski VG.
Montgomery JA.
Stratmann RE.
Burant JC.
Dapprich S.
Millam JM.
Daniels AD.
Kudin KN.
Strain MC.
Farkas O.
Tomasi J.
Barone V.
Cossi M.
Cammi R.
Mennucci B.
Pomelli C.
Adamo C.
Clifford S.
Ochterski J.
Petersson GA.
Ayala PY.
Cui Q.
Morokuma K.
Malick DK.
Rabuck AD.
Raghavachari K.
Foresman JB.
Cioslowski J.
Ortiz JV.
Baboul AG.
Stefanov BB.
Liu G.
Liashenko A.
Piskorz P.
Komaromi I.
Gomperts R.
Martin RL.
Fox DJ.
Keith T.
Al-Laham MA.
Peng CY.
Nanayakkara A.
Gonzalez C.
Challacombe M.
Gill PMW.
Johnson BG.
Chen W.
Wong MW.
Andres JL.
Head-Gordon M.
Replogle ES.
Pople JA.
Gaussian 98 (Revision
A.9)
Gaussian, Inc.;
Pittsburgh PA:
1998.
12c
Ahlrichs R.
Bär M.
Häser M.
Horn H.
Kölmel C.
Chem.
Phys. Lett.
1998,
162
12d
Schafer A.
Huber C.
Ahlrichs R.
J.
Chem. Phys.
1994,
100:
5829
13 In an attempt to improve stability,
the possibility of employing reduced allyl alcohol analogues (protected
as silylethers) was briefly investigated. While in the case of analogues
of 11 these species proved stable and gave reasonable
yields of RRM adduct (pre-cycloaddition) in accordance with ref.
4a, higher homologues were unreactive and offered no advantages
over their oxidised counterparts 12 and 13.
14 To a solution of 11 (60.0
mg, 0.180 mmol) and 26 (56.1 mg, 0.540
mmol) in CH2Cl2 (0.05 molar) under N2 was
added catalyst 15 (15.2 mg, 10 mol%)
and the reaction was stirred at 55 °C for 3 h.
To this solution was added an excess of ethyl vinyl ether. After
the solvent was removed, the residue was purified by flash column
chromatography on silica gel (hexane/MTBE 10:1) to yield
86.0 mg of triene 29 (93%) as a
light yellow oil. 29 (24 mg, 0.0467 mmol)
was solved
in toluene (2 mL) and heated to 150 °C
for 4 h in a sealed tube to yield after purifying by flash column
chromato-graphy on silica gel (hexane/MTBE 4/1)
20.4 mg of 34 (85%) as a white
waxy product.
1H NMR (500 MHz, CDCl3): δ (ppm) = 8.41-8.39
(d, J = 8.9
Hz, 2 H), 8.08-8.06 (d, J = 8.8
Hz, 2 H), 7.25-7.19 (m, 6 H), 7.06-7.00 (d, J = 6.9 Hz,
2 H), 6.99-6.98 (d, J = 7.2
Hz, 2 H), 6.10 (br, 1 H), 4.33-4.31 (dd, J = 13.4
Hz, J = 1.2
Hz, 1 H), 4.22-4.18 (ddd, J = 8.7
Hz, J = 6.4
Hz, J = 6.4
Hz, 1 H), 4.06-4.02 (ddd, J = 13.5
Hz, J = 1.8
Hz, J = 1.8
Hz, 1 H), 3.92-3.91 (dd, J = 2.9
Hz, J = 2.9
Hz, 1 H), 3.66 (br, 1 H), 2.75-2.73 (ddd, J = 8.7
Hz, J = 8.7
Hz, J = 0.5
Hz, 1 H), 2.58-2.57 (dd, J = 7.4
Hz, J = 3.2
Hz, 1 H), 2.46-2.40 (m, 1 H), 2.30-2.24 (m, 2
H), 2.10-2.06 (m, 1 H). 13C
NMR (125 MHz, CDCl3): δ (ppm) = 206.68
(C), 150.38 (C), 144.73 (C), 144.20 (C), 143.30 (C), 136.05 (C),
128.80 (CH ¥ 2), 128.75 (CH ¥ 2),
128.30 (CH ¥ 2), 127.90 (CH ¥ 2),
127.34 (CH ¥ 2), 126.81 (CH), 126.67
(CH), 124.96 (CH), 124.65 (CH ¥ 2), 58.72
(CH), 51.61 (CH2), 49.84 (CH), 45.60 (CH), 44.44 (CH),
37.81 (CH), 35.63 (CH2), 27.52 (CH2). IR (ATR): ν (cm-1) = 3103,
3060, 2926, 2867, 1713, 1529, 1349, 1168, 1091, 737. MS (EI, 100 °C): m/z (%) = 514 [M+],
355, 328, 182, 168, 141, 115, 91. HRMS calcd for C29H26N2O5S [M+]:
514.1562. Found: 514.1567.