RSS-Feed abonnieren
DOI: 10.1055/s-2003-38373
Facile and Efficient Oxidative Transformation of Primary Alcohols to Methyl Esters in Water Using Hypervalent Iodine(III) Reagents
Publikationsverlauf
Publikationsdatum:
28. März 2003 (online)
Abstract
A facile and direct oxidative esterification of primary alcohols in water using a combination of the hypervalent iodine(III) reagent, iodosobenzene (PhIO), and KBr has been developed. This methodology is expected to be environmentally benign since it uses a recyclable polymer-supported iodine(III) reagent in water.
Key words
alcohols - oxidations - esterification - hypervalent iodine - polymers
-
1a
Protective Group in Organic Synthesis
3rd
ed.:
Greene TM.Wutz PG. Wiley; New York: 1999. p.149 -
1b
Protective
Group in Organic Synthesis
3rd ed.:
Greene TM.Wutz PG. Wiley; New York: 1999. p.373 -
2a
Larock RC. Comprehensive Organic Transformation 2nd ed.: VCH; New York: 1999. p.1656 -
2b
March J. Advanced Organic Chemistry John Wiley & Sons; New York: 1992. p.1196 -
3a
Kaneko R.Seki K.Suzuki M. Chem. Ind. (London) 1971, 1016 -
3b
Smith AB.Sulikowski GA.Sulikowski MM.Fujimoto K. J. Am. Chem. Soc. 1992, 114: 2567 -
3c
Foot JS.Kanno H.Giblin GMP.Taylor RJK. Synlett 2002, 1293 -
4a
Corey EJ.Samuelsson B. J. Org. Chem. 1984, 49: 4735 -
4b
Guest AW. Tetrahedron Lett. 1986, 27: 3049 - 5
Milovanovic JN.Vasojevic M.Gojkovic S. J. Chem. Soc., Perkin Trans. 2 1991, 1231 - 6
McDonald CE.Holcomb HL.Leathers TW.Kennedy KE. Microchem. J. 1993, 47: 115 - 7
McDonald CE.Nice LE.Shaw AW.Nestor NB. Tetrahedron Lett. 1993, 34: 2741 - Recent reviews see:
-
8a
Stang PJ.Zhdankin VV. Chem. Rev. 1996, 96: 1123 -
8b
Kita Y.Takada T.Tohma H. Pure & Appl. Chem. 1996, 68: 627 -
8c
Varvoglis A. Hypervalent Iodine in Organic Synthesis Academic Press; San Diego: 1997. -
8d
Kitamura T.Fujiwara Y. Org. Prep. Proced. Int. 1997, 29: 409 -
8e
Ochiai M. In Chemistry in Hypervalent CompoundsAkiba K. Wiley-VCH; New York: 1999. Chap. 12. -
8f
Wirth T.Hirt UH. Synthesis 1999, 1271 -
8g
Zhdankin VV.Stang PJ. Chem. Rev. 2002, 102: 2523 -
8h
Hypervalent
Iodine Chemistry (Top. Curr. Chem. 224)
Wirth T. Springer-Verlag; Berlin, Heidelberg: 2003. -
9a
Tohma H.Takizawa S.Maegawa T.Kita Y. Angew. Chem. Int. Ed. 2000, 39: 1306 -
9b
Tohma H.Maegawa T.Takizawa S.Kita Y. Adv. Synth. Catal. 2002, 344: 328 - Reviews see:
-
11a
Drewry DH.Coe DM.Poon S. Med. Res. Rev. 1999, 19: 97 -
11b
Ley SV.Baxendale IR.Bream RN.Jackson PS.Leach AG.Longbottom DA.Nesi M.Scott JS.Storer RI.Taylor SJ. J. Chem. Soc., Perkin Trans. 1 2000, 3815 -
11c
Bhalay G.Dunstan A.Glen A. Synlett 2000, 1846 -
11d
Kirschning A.Monenschein H.Wittenberg R. Angew. Chem. Int. Ed. 2001, 40: 650 -
11e
Togo H.Sakuratani K. Synlett 2002, 1966 -
12a
Togo H.Nogami G.Yokoyama M. Synlett 1998, 534 -
12b
Togo H.Abe S.Nogami G.Yokoyama M. Bull. Chem. Soc. Jpn. 1999, 72: 2351 -
12c
Abe S.Sakuratani K.Togo H. Synlett 2001, 22 -
12d
Abe S.Sakuratani K.Togo H. J. Org. Chem. 2001, 66: 6174 -
13a
Ley SV.Thomas AW.Finch H. J. Chem. Soc., Perkin Trans 1 1999, 669 -
13b
Ley SV.Schucht O.Thomas AW.Murray PJ. J. Chem. Soc., Perkin Trans. 1 1999, 1251 -
13c
Baxendale IR.Ley SV.Piutti C. Angew. Chem. Int. Ed. 2002, 41: 2194 -
13d
Baxendale IR.Lee A.-L.Ley SV. J. Chem. Soc., Perkin Trans. 1 2002, 1850 -
14a
Tohma H.Morioka H.Takizawa S.Arisawa M.Kita Y. Tetrahedron 2001, 57: 345 -
14b
Tohma H.Morioka H.Harayama Y.Hashizume M.Kita Y. Tetrahedron Lett. 2001, 42: 6899 -
15a
Okawara M.Mizuta K. Kogyo Kagaku Zasshi 1961, 64: 232 -
15b
Yamada Y.Okawara M. Makromol. Chem. 1972, 152: 153 -
15c
Hallensleben ML. Angew. Makromol. Chem. 1972, 27: 223
References
Among the typical hypervalent iodine(III or V) reagents, PhIO gave the best yield [75% yield], while other reagents such as phenyliodine diacetate (PIDA) [47% yield], phenyliodine bis(trifluoroacetate) (PIFA) [40% yield], Dess-Martin periodinane [trace], and o-iodoxybenzoic acid [trace], were also examined under the reaction conditions described in Table [1] .
16General Experimental Procedure: Oxidation with PhIO-KBr: To a stirred solution of 1 (1.0 mmol) and KBr (0.5 mmol) in MeOH (1 mL) was added dropwise 0.5 N HCl aq (0.5 mL). PhIO (3.5 mmol) was added to the vigorously stirred solution and stirring was continued for several hours at room temperature while checking the reaction progress by GC or TLC. After completion of the reaction, water (ca. 1.5 mL) was added to the mixture. The mixture was filtrated through BOND ELUT C 18 (Varian), washed with a small amount of water, and extracted with Et2O. The filtrate was dried with MgSO4, and evaporated. The residue was purified by column chromatography (SiO2/n-hexane-Et2O) to give pure 2. Oxidation with PDAIS-KBr: To a stirred solution of 1 (1.0 mmol) and KBr (1.0 mmol) in MeOH (2 mL) was added dropwise 0.5 N HCl aq (1 mL). PDAIS (prepared by the reported procedure [9b] ) (3.0 mmol) was added to the vigorously stirred solution and stirring was continued for several hours at room temperature. After completion of the reaction, water (ca. 3 mL) was added to the mixture. The mixture was filtered through BOND ELUT C 18 (Varian) and washed with a small amount of water to remove KBr. The residue was extracted with Et2O, and the filtrate was dried and evaporated. The residue was purified by column chromatography to give pure 2.