RSS-Feed abonnieren
DOI: 10.1055/s-2003-38736
Diastereoselective Baylis-Hillman reaction: Use of Sugar Derived Aldehydes as Chiral Electrophiles [1]
Publikationsverlauf
Publikationsdatum:
17. April 2003 (online)
Abstract
The asymmetric Baylis-Hillman reaction of sugar-derived aldehydes as chiral electrophiles with an activated olefin in dioxane: water (1:1) with 36-86% de and in good yields is described.
Key words
Baylis-Hillman reaction - sugar derived aldehydes - chiral electrophiles - activated alkene - tertiary amine
IICT Communication number: 020709.
- 2
Drewes SE.Roos GHP. Tetrahedron 1988, 44: 4653 - 3
Basavaiah D.Rao PD.Hyma RS. Tetrahedron 1996, 52: 8001 - 4
Langer P. Angew. Chem. Int. Ed. 2000, 39: 3049 - 5
Yang K.-S.Chen K. Org. Lett. 2000, 2: 729 - 6
Brzezinski LJ.Rafel S.Leahy JM. J. Am. Chem. Soc. 1997, 119: 4317 - 7
Gilbert A.Heritage TW.Isaacs NS. Tetrahedron: Asymmetry 1991, 2: 969 - 8
Drewes SE.Manickum T.Roos GHP. Synth. Commun. 1988, 18: 1065 - 9
Iwabuchi Y.Nakatani M.Yokoyama N.Hatakeyama S. J. Am. Chem. Soc. 1999, 121: 10219 - 10
Oishi T.Oguri H.Hirama M. Tetrahedron: Asymmetry 1995, 6: 1241 - 11
Drewes SE.Emslie ND.Khan A. Synth. Commun. 1993, 23: 1215 - 12
Basavaiah D.Gowriswari VVL.Sarma PKS.Dharma Rao P. Tetrahedron Lett. 1990, 31: 1621 - 13
Radha Krishna P.Kannan V.Ilangovan A.Sharma GVM. Tetrahedron: Asymmetry 2001, 12: 829 - 14
Yu C.Liu B.Hu L. J. Org. Chem. 2001, 66: 5413 - 15
Tronchet JMJ.Baehler B.Eder H.Le Hong N.Perret F.Poncet H.Zumbwald JB. Helv. Chem. Acta 1973, 56: 1310 - 16
Horton D.Nakadate M.Tronchet JMJ. Carbohydr. Res. 1968, 7: 56 - 17
Cornia M.Casiraghi G. Tetrahedron 1989, 45: 2869 - 18
Patil NT.Tilekar JN.Dhavale DD. J. Org. Chem. 2001, 66: 1065 - 19
Roush WR.Adam M.Walts AE.Harris DJ. J. Am. Chem. Soc. 1986, 108: 3422 - 20
Jorgenson MJ. Tetrahedron Lett. 1962, 13: 559
References
IICT Communication number: 020709.
21The energy minimization was carried out using Sybyl 6.8 with default Tripose force field Parameters. Minimization was done first with steepest discent followed by conjugate gradient methods for a maximum of 2000 iteration each or RMS deviation of 0.005 kcal/mole which ever was earlier.
22General experimental procedure: To the aldehyde (1 mmol) in dioxane-H2O [(1:1), 5 mL], DABCO (1 mmol) and ethyl acrylate (3 mmol) were added and the reaction mixture stirred for 15 h at room temperature. After the complete conversion of the aldehyde, the reaction mixture was partitioned by ethyl acetate (3 ¥ 15 mL), washed with brine (25 mL), dried (Na2SO4) and concentrated under reduced pressure to get a residue, which was purified by chromatography (Si-gel 60-120 mesh, EtOAc:hexane, 1:9) to afford adducts 1a-c, 2a-c, 3a and 3c in 56-82% yield.
23
Spectral data
for selected compounds: (S)-1a; [α]D =
-47.39
(c 0.8, CHCl3); 1H
NMR (200 MHz, CDCl3, TMS): δ 1.26-1.42
(m, 6 H, 2 ¥ CH3), 1.46 (s, 3 H, CH3),
3.50 (s, 3 H, -OMe), 3.82 (d, 1 H, J
3,4 = 3.0
Hz, H-3), 4.20-4.36 (m, 3 H, H-4, -OCH2-), 4.54
(d, 1 H, J
2,1 = 3.7
Hz, H-2), 4.64 (d, 1 H, J
5,4 = 8.9
Hz, H-5), 5.85 (d, 1 H, J
1,2 = 3.7
Hz, H-1), 5.96 (s, 1 H, olefinic), 6.38 (s, 1 H, olefinic); 13C
NMR (75 MHz, CDCl3, TMS), δ 14.49, 27.21, 30.00,
58.28, 61.25, 70.03, 80.32, 82.02, 86.35, 105.46, 112.25, 127.81,
140.06, 166.73; FABMS: m/z 303 (M+ + 1);
Anal. calcd. for C14H22O7: C, 55.62,
H, 7.33; found: C, 55.51, H, 7.24. (R)-1a; [α]D =
-28.82
(c 1, CHCl3); 1H
NMR (300 MHz, CDCl3, TMS): δ 1.30-1.39
(m, 6 H, 2 ¥ CH3), 1.48 (s, 3 H, CH3),
3.48 (s, 3 H, -OMe), 3.83 (d, 1 H, J
3,4 = 3.0
Hz, H-3), 4.28 (q, 2 H, J = 7.4
Hz, -OCH2-), 4.40 (dd, 1 H, J
4,3 = 3.0, J
4,5 = 5.9 Hz, H-4),
4.58 (d, 1 H, J
2,1 = 3.9
Hz, H-2), 4.83 (d, 1 H, J
5,4 = 5.9 Hz,
H-5), 5.95 (d, 1 H, J
1,2 = 3.9
Hz, H-1), 6.08 (s, 1 H, olefinic), 6.79 (s, 1 H, olefinic); FABMS:
303 (M+ + 1); Anal. calcd. for C14H22O7:
C, 55.62, H, 7.33; found: C, 55.68, H, 7.29. 8; [α]D = -52.
27 (c 0.8, CHCl3); 1H
NMR (500 MHz, CDCl3, TMS): δ 1.32 (s, 3 H, CH3),
1.39 (s, 3 H, CH3), 1.48 (s, 6 H, 2 ¥ CH3),
3.44 (s, 3 H, -OMe), 3.61 (d, 1 H, J
3,4 = 2.9
Hz, H-3), 4.23 (dd, 1 H, J
4,3 = 2.9, J
4,5 = 8.9 Hz, H-4),
4.25 (d, 1 H, J = 13.2 Hz, -CH2),
4.37 (d, 1 H, J = 13.2 Hz, -CH2),
4.53 (d, 1 H, J
2,1 = 3.9
Hz, H-2), 4.58 (d, 1 H,
J
4,5 = 8.9
Hz, H-5), 4.99 (s, 1 H, olefinic), 5.28 (s, 1 H, olefinic), 5.94
(d, 1 H, J
1,2 = 3.9
Hz, H-1); FABMS: m/z 301 (M+ + 1);
Anal. calcd. for C15H24O6: C, 59.98,
H, 8.05; found: C, 59.87, H, 7.98. 9; [α]D = +21.98
(c 0.6, CHCl3); 1H NMR
(500 MHz, CDCl3, TMS): δ 1.34 (s, 3 H, CH3),
1.46 (s, 6 H, 2 ¥ CH3), 1.52 (s, 3 H, CH3),
3.38 (s, 3 H, -OMe), 3.78 (d, 1 H, J
3,4 = 3.9
Hz, H-3), 4.21 (d, 1 H, J = 13.2
Hz,
-CH2), 4.36 (d, 1 H, J = 13.2
Hz, -CH2), 4.43 (dd, 1H,
J
4,3 = 3.9, J
4,5 = 7.8 Hz, H-4),
4.60 (d, 1 H, J
2,1 = 3.9
Hz,
H-2), 4.71 (d, 1 H, J
5,4 = 7.8
Hz, H-5), 4.96 (s, 1 H, olefinic), 5.0 (s, 1 H, olefinic), 5.99
(d, 1 H, J
1,2 = 3.9
Hz, H-1); FABMS: m/z 301 (M+ + 1);
Anal. calcd. for C15H24O6: C, 59.98,
H, 8.05; found: C, 59.93, H, 8.12.