References
1a
Yang BH.
Buchwald SL.
J. Organomet. Chem.
1999,
576:
125
1b
Marcoux J.-F.
Doye S.
Buchwald SL.
J. Am.
Chem. Soc.
1997,
119:
10539
1c
Hartwig F.
Mann G.
J. Org. Chem.
1997,
62:
5413
1d
Baranano D.
Hartwig JF.
J. Am. Chem. Soc.
1995,
117:
2937
1e
Kosugi M.
Shimizu T.
Migita T.
Chem.
Lett.
1978,
13
2a
Krief A. In
Comprehensive
Organometallic Chemistry II
Vol. 11:
Abel EW.
Stone FGA.
Wilkinson G.
Pergamon
Press Ltd.;
New York:
1995.
Chap.
13.
2b
Organoselenium
Chemistry, Topics in Current Chemistry 208
Wirth T.
Springer-Verlag;
Heidelberg:
2000.
2c
Paulmier C.
Selenium
Reagents and Intermediates in Organic Synthesis, in Organic Chemistry
Series 4
Baldwin JE.
Pergamon
Press Ltd.;
Oxford:
1986.
Some examples of phenylselenation
of alkyl halide with stoichiometric metal reagent and diphenyl diselenide
are known:
3a
Okamoto Y.
Yano T.
J. Organomet. Chem.
1971,
29:
99
3b
Bao W.
Zheng Y.
Zhang Y.
Zhou J.
Thetrahedron Lett.
1996,
37:
9333
3c
Bao W.
Zhang Y.
Synlett
1996,
1187
3d
Nishino YT.
Okada M.
Kuroki T.
Watanabe T.
Nishiyama Y.
Sonoda N.
J. Org. Chem.
2002,
67:
8696
As an example using efficiently
diphenyl diselenide, the palladium-catalyzed addition to acetylene
compounds has been reported:
4a
Kuniyasu H.
Ogawa A.
Miyazaki S.-i.
Ryu I.
Kanbe N.
Sonoda N.
J. Am. Chem. Soc.
1991,
113:
9796
4b
Ogawa A.
Kuniyasu H.
Sato K.
Sonoda N.
Hirao T.
J.
Org. Chem.
1997,
62:
8361
5a
Suzuki H.
Abe H.
Osuka A.
Chem. Lett.
1981,
151
5b
Gujadhur RK.
Venkataruman D.
Tetrahedron
Lett.
2003,
44:
81
6
Nishiyama Y.
Tokunaga K.
Sonoda N.
Org.
Lett.
1999,
1:
1725
7 In the experiment of entry 1 in Tables
[1]
, 97% 2-iodotoluene and
89% diphenyl diselenide were recovered; no other products
were obtained at all.
8 The magnesium metal could not reduce
diphenyl diselenide under our conditions. In entry 2 in Tables
[1]
, 97% 2-iodotoluene
and 96% diphenyl diselenide were recovered.
The preparation of ArMgI from ArI
and Mg could not be carried out in DMF:
9a
Olah GA.
Ohannesian L.
Arvanaghi M.
Chem. Rev.
1987,
87:
671
9b
Organomagnesium
Methods in Organic Synthesis
Wakefield BJ.
Academic Press;
San Diego:
1995.
10 The reaction between CuI and (PhSe)2 produced
a green precipitate. The structure of this compound is now under investigation.
11 Cu(I)SePh could be prepared by refluxing
Cu2O and PhSeH in EtOH for 24 h.
12
Back TG.
Collins S.
Law K.-W.
Tetrahedron
Lett.
1984,
25:
1689
13
Suzuki H.
Abe H.
Osuka A.
Chem.
Lett.
1981,
151
14 A typical procedure is given for the
reaction of 2-iodotoluene with diphenyl diselenide giving phenyl
2-tolyl selenide (entry 1 in Table
[2]
):
To a mixture of Cu2O (2.1 mg, 0.015 mmol), magnesium(powder)
(14.6 mg, 0.6 mmol), 2,2′-bipyridyl(bpy) (4.6 mg, 0.03
mmol) and DMF (0.5 mL) were added 2-iodotoluene (65.4 mg, 0.3 mmol)
and diphenyl diselenide (46.8 mg, 0.15 mmol), and the mixture was
stirred at 110 °C for 30 h. After evaporation of the solvent,
the residue was dissolved in Et2O. The solution was washed with
H2O and sat. NaCl and dried over anhyd MgSO4. Chromatography
on silica gel(hexane) gave phenyl 2-tolyl selenide (78.1 mg, 92%). 1H
NMR (270 MHz, CDCl3): δ = 2.39 (s,
3 H), 7.06 (t, J = 7.0 Hz, 1 H), 7.15-7.41
(m, 7 H), 7.56-7.62 (m, 1 H). 13C
NMR (67.5 MHz): δ = 22.3, 126.7, 127.1, 127.7,
127.8, 129.1, 129.3, 130.2, 131.5, 132.7, 133.6. 77Se
(51 MHz): δ = 479.7. 4-Bromophenyl
phenyl selenide: 1H NMR (270 MHz, CDCl3): δ = 7.26-7.31
(m, 5 H), 7.35-7.38 (m, 2 H), 7.45-7.48 (m, 2
H). 13C NMR (67.5 MHz): δ = 121.4,
127.7, 129.4, 130.3, 132.3, 133.2, 133.3, 134.2. 77Se
(51 MHz): δ = 432.0. Anal. Calcd for C12H9SeBr: C,
46.19; H, 2.91. Found: C, 46.39; H, 3.05. Phenyl
4-trifluoromethylphenyl selenide: 1H NMR
(270 MHz, CDCl3): δ = 7.24-7.37
(m, 3 H), 7.40-7.47 (m, 4 H), 7.55-7.58 (m, 2
H). 13C NMR (67.5 MHz): δ = 125.8,
125.8, 125.9, 126.0, 128.5, 128.7, 129.7, 131.0, 134.8. 77Se
(51 MHz): δ = 443.1. Anal. Calcd for C13H9F3Se:
C, 51.84; H, 3.01. Found: C, 51.69; H, 3.14.