RSS-Feed abonnieren
DOI: 10.1055/s-2003-38869
© Georg Thieme Verlag Stuttgart · New York
Positive Cooperation of Protoberberine Type 2 Alkaloids from Corydalis cava on the GABAA Binding Site
Publikationsverlauf
Received: August 19, 2002
Accepted: October 27, 2002
Publikationsdatum:
23. April 2003 (online)
Abstract
Protoberberine alkaloids from the rhizomes of Corydalis cava were investigated with regard to their influence on the GABAA receptor using radioreceptor assays. Whereas the protoberberine type 2 alkaloids, isoapocavidine, corydaline, tetrahydropalmatine, scoulerine and isocorypalmine, increased the specific [³H]BMC-binding in a range of 21 - 49 %, the protoberberine type 1 alkaloids, palmatine, coptisine, dehydroapocavidine, and dehydrocorydaline, had no influence on the binding behaviour of the GABAA receptor. To confirm the modulatory activity of the protoberberine type 2 alkaloids on living cells, GABAA receptor binding studies were performed by fluorescence correlation spectroscopy (FCS) using hippocampal neurons and the fluorescently labelled ligand, muscimol-Alexa (Mu-Alexa). The incubation of hippocampal neurons with 7.5 nM Mu-Alexa showed a specific binding of 5.25 nM (70 %). The evaluation of the autocorrelation curve revealed two different mobilities of receptor ligand complexes, Dbound1 = (2.8 ± 0.91) μm2/s for the free lateral mobility and Dbound2 = (0.14 ± 0.05) μm2/s for the hindered mobility. An incubation of hippocampal neurons with 7.5 nM Mu-Alexa and 7.5 nM scoulerine showed a maximal increase of the specific Mu-Alexa binding of approximately 27 % by selectively modulating the amount of receptor-ligand complexes with a hindered mobility (9 % to 27 %).
Key words
Corydalis cava - Fumariaceae - alkaloids - GABAA receptor - radioreceptor assay - fluorescence correlation spectroscopy
References
- 1 Slavík J, Slavíkova L. Alkaloids from Corydalis cava (L.) Schw. et Koerte. Collection Czechoslov Chem Commun. 1979; 44 2261-74
- 2 Simon P, Chermat R, Larousse C, Boissier J R. Action of bulbocapnine on several psychopharmacological tests. Therapie. 1970; 25 939-49
- 3 Lai C K, Chan A Y. Tetrahydropalmatine poisoning: diagnoses of nine adult overdoses based on toxicology screens by HPLC with diode-array detection and gas chromatography-mass spectrometry. Clin Chem. 1999; 45 229-36
- 4 Hsieh M T, Su S H, Tsai H Y, Peng W H, Hsieh C C, Chen C F. Effects of palmatine on motor activity and the concentration of central monoamines and its metabolites in rats. Japan. J Pharmacol. 1993; 61 1-5
- 5 Kardos J, Blasko G, Simonyi M. Enhancement of gamma-aminobutyric acid receptor binding by protopine-type alkaloids. Arzneimittelforschung. 1986; 36 939-40
- 6 Thompson N L. Fluorescence Correlation Spectroscopy. In: Lakowicz JR, Lakowicz JR, editors Vol. 1 New York, London; Plenum Press 1991: 337-78
- 7 Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters. J Soc Indust Appl Math. 1963; 11 431-41
- 8 Chen C-Y, MacLean D B. Mass spectra and proton magnetic resonance spectra of some tetrahydroprotoberberine alkaloids. Can J Chem. 1968; 46 2501-6
- 9 Guinaudeau H, Shamma M. The protopine alkaloids. J Nat Prod. 1982; 45 237-46
- 10 Orito K, Miyazawa M, Kanbayashi R, Tokuda M, Suginome H. Synthesis of phthalideisoquinoline and protoberberine alkaloids and indolo[2,1-a]isoquinolines in a divergent route involving palladium(0)-catalyzed carbonylation. J Org Chem. 1999; 64 6583-96
- 11 Wu T -S, Huang S -C, Lu S -T, Wu Y -C. Structure and stereochemistry of corytensine, a new phthalideisoquinoline alkaloid from Corydalis ochotensis . Heterocycles. 1988; 27 1565-8
- 12 Rücker G, Breitmaier E, Zhang G -L, Mayer R. Alkaloids from Dactylicapnos torulosa . Phytochemistry. 1994; 36 519-23
- 13 Miyazawa M, Yoshio K, Ishikawa Y, Kameoka H. Insecticidal alkaloids from Corydalis bulbosa against Drosophila melanogaster . J Agric Food Chem. 1998; 46 1914-9
- 14 Kim J P, Jung M Y, Kim J -P, Kim S Y. Antiphotooxidative activity of protoberberine derived from Coptis japonica Makino in the chlorophyll-sensitized photooxidation of oil. J Agric Food Chem. 2000; 48 1058-63
- 15 Jewers K,Manchanda A H. The proton magnetic resonance spectra of protoberberinium salts. J Chem Soc Perkin Trans. 1972; II 1393-2038
- 16 Meißner O. Analytik und pharmakologische Bedeutung der Flavokavine aus Piper methysticum Forst. Doctoral thesis. Philipps-Universität Marburg 2002
- 17 Velazquez J L, Thompson C L, Barnes E M, Jr, Angelides K J. Distribution and lateral mobility of GABA/benzodiazepine receptors on nerve cells. J Neurosci. 1989; 9 2163-9
- 18 Peters R, Cherry R J. Lateral and rotational diffusion of bacteriorhodopsin in lipid bilayers: experimental test of the Saffman-Delbruck equations. Proc Natl Acad Sci USA. 1982; 79 4317-21
- 19 Pralle A, Keller P, Florin E L, Simons K, Horber J K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol.. 2000; 148 997-1008
- 20 Peran M, Hicks B W, Peterson N L, Hooper H, Salas R. Lateral mobility and anchoring of recombinant GABA(A) receptors depend on subunit composition. Cell Motil Cytoskeleton. 2001; 50 89-100
Prof. Dr. H. Häberlein
Physiological Chemistry
University of Bonn
Nussallee 11
53115 Bonn
Germany
eMail: haeberlein@institut.physiochem.uni-bonn.de
Fax: +49-228-732416