Subscribe to RSS
DOI: 10.1055/s-2003-39171
Recent Advances in Asymmetric [3,3]-Sigmatropic Rearrangements
Publication History
Publication Date:
09 May 2003 (online)
Abstract
The synthesis of new complex structures is still a challenge in preparative organic chemistry. Focusing on the generation of defined stereogenic centers, the [3,3]-sigmatropic rearrangements are known as reliable reactions. Always, a highly ordered transition state must be passed through, which allows the shift of chiral information from the reactant into the nascent product. Generally, the complete [1,3]- and, frequently, the [1,4]-chirality transfer enables one to predict the configuration of the new centers.
This review focuses on Claisen and Cope rearrangements, which adopt the chiral information via a so termed asymmetric induction. This means, that the directing chiral subunit is placed outside of the six centers of the rearrangement system being reorganized during the course of the [3,3]-sigmatropic reaction.
Reviewing the literature since 1995, enantioselective Claisen rearrangements have been widely investigated. The unique sense of the reaction allows the conversion of an easily accessible C atom-heteroatom bond into a new C-C bond making this rearrangement useful for constructing complex molecules. In contrast, the Cope rearrangement is reversible. One crucial requirement is to force the process to completion with respect to the desired product. Hence ‘enantioselective Cope rearrangements’ are always included as one step in a reaction cascade to guarantee the unique sense of the process. Analyzing such reactions in more detail, the chirality-inducing step is run prior to the Cope rearrangement. Thus, the [3,3]-sigmatropic rearrangement is conducted under the well-known [1,3]-chirality transfer conditions.
-
1 Introduction
-
2 Asymmetric Claisen Rearrangements: Classification
-
3 Remote Stereocontrol in Claisen Rearrangements
-
3.1 Stereogenic Center at C1
-
3.2 Stereogenic Center at C6
-
3.3 Stereogenic Center in Other Positions
-
4 Auxiliary Control in Claisen Rearrangements
-
4.1 Auxiliary Attached to Position X
-
4.2 Auxiliary Attached to Position Y
-
4.3 Auxiliary Attached to Position Z
-
4.4 Miscellaneous
-
5 Chiral Metal Complex Directed Claisen Rearrangements
-
6 Enantioselective Catalyzed Claisen Rearrangements
-
7 Asymmetric Cope Rearrangements
-
7.1 Remote Stereocontrol in Cope Rearrangements
-
7.2 Auxiliary Control in Cope Rearrangements
-
7.3 Catalyst Control in Cope Rearrangements
-
8 Summary
Key words
asymmetric Claisen rearrangement - Cope rearrangement - chiral auxiliary - chiral metal complex - chiral catalyst
- For recent reviews on asymmetric Claisen and Cope rearrangements see:
-
1a
Frauenrath H. In Houben-Weyl (Methods of Organic Chemistry), Stereoselective Synthesis Vol. E21d:Helmchen G.Hoffmann RW.Mulzer J.Schaumann E. Thieme; Stuttgart: 1995. p.3301 -
1b
Metzner P. Pure Appl. Chem. 1996, 68: 863 -
1c
Enders D.Knopp M.Schiffers R. Tetrahedron: Asymmetry 1996, 7: 1847 -
1d
Ito H.Taguchi T. Chem. Soc. Rev. 1999, 28: 43 -
1e
Kazmaier U.Maier S.Zumpe FL. Synlett 2000, 1523 -
1f
Allin SM.Baird RD. Curr. Org. Chem. 2001, 395 -
1g
Hiersemann M.Abraham L. Eur. J. Org. Chem. 2002, 1461 -
1h
Chai Y.Hong S.-P.Lindsay HA.McFarland C.McIntosh MC. Tetrahedron 2002, 58: 2905 -
1i
Paquette LA. Tetrahedron 1997, 53: 1397 - For catalytic asymmetric reactions see:
-
2a
Avalos M.Babiano R.Cintas P.Jiménez JL.Palacios JC. Tetrahedron: Asymmetry 1997, 8: 2997 -
2b
Brunel J.-M.Luukas TO.Kagan HB. Tetrahedron: Asymmetry 1998, 9: 1941 -
2c
Kolb HC.VanNieuwenhze MS.Sharpless KB. Chem. Rev. 1994, 94: 2483 -
3a
Palmer MJ.Wills M. Tetrahedron: Asymmetry 1999, 10: 2045 -
3b
Daviero P.Zanda M. Tetrahedron: Asymmetry 2001, 12: 2225 -
4a
Gotor V.Rebolledo F.Liz R. Tetrahedron: Asymmetry 2001, 12: 513 -
4b
Enzyme Catalyst
in Organic Synthesis
Drauz K.Waldmann H. VCH; Weinheim, Germany: 1995. - 5
Sreekumar R.Padmakumar R. Tetrahedron Lett. 1997, 38: 2413 - 6
Beslin P.Lelong B. Tetrahedron 1997, 53: 17253 - 7
Cuzzupe AN.Di Florio R.Rizzacasa MA. J. Org. Chem. 2002, 67: 4392 -
8a
Pratt LM.Bowles SA.Courtney SF.Hidden C.Lewis CN.Martin FM.Todd RS. Synlett 1998, 531 -
8b
Pratt LM.Beckett RP.Bellamy CL.Corkill DJ.Cossins J.Courtney PF.Davies SJ.Davidson AH.Drummond AH.Helfrich K.Lewis CN.Mangan M.Martin FM.Miller K.Nayee P.Ricketts ML.Thomas W.Todd RS.Whittaker M. Bioorg. Med. Chem. Lett. 1998, 8: 1359 -
9a
Yamazaki T.Shinohara N.Kitazume T.Sato S. J. Org. Chem. 1995, 60: 8140 -
9b
Yamazaki T.Ichige T.Takei S.Kawashita S.Kitazume T.Kubota T. Org. Lett. 2001, 3: 2915 -
9c For a publication concerning
Michael additions see:
Shinohara N.Haga J.Yamazaki T.Kitazume T.Nakamura S. J. Org. Chem. 1995, 60: 4363 -
9d For the Cieplack model
see:
Cieplak AS. Chem. Rev. 1999, 99: 1265 -
9e For a publication on racemic
Michael-Ireland sequences see:
Eriksson M.Hjelmencrantz A.Nilsson M.Olsson T. Tetrahedron 1995, 51: 12631 - 10
Hagiwara H.Sakai H.Uchiyama T.Ito Y.Morita N.Hoshi T.Suzuki T.Ando M. J. Chem. Soc., Perkin Trans. 1 2002, 583 - 11
Becker M.Krause N. Liebigs Ann. Recueil 1997, 725 -
12a
Alayrac C.Fromont C.Metzner P.Anh NT. Angew. Chem., Int. Ed. Engl. 1997, 36: 371 ; Angew. Chem. 1997, 109, 418 -
12b
Nowaczyk S.Alayrac C.Reboul V.Metzner P.Averbuch-Pouchot M.-T. J. Org. Chem. 2001, 66: 7841 -
12c For preparation of optically
active sulfoxides see:
Alayrac C.Nowaczyk S.Lemarie M.Metzner P. Synthesis 1999, 669 -
12d
Alayrac C.Metzner P. Tetrahedron Lett. 2000, 41: 2537 -
13a
Ernst B.Gonda J.Jeschke R.Nubbemeyer U.Öhrlein R.Bellus D. Helv. Chim. Acta 1997, 80: 876 -
13b
Gonda J.Martinková M.Ernst B.Bellus D. Tetrahedron 2001, 57: 5607 -
13c For a preliminary publication
see:
Nubbemeyer U.Öhrlein R.Gonda J.Ernst B.Bellus D. Angew. Chem., Int. Ed Engl. 1991, 30: 1465 ; Angew. Chem. 1991, 103, 1533 -
14a
Nubbemeyer U. J. Org. Chem. 1995, 60: 3773 -
14b
Nubbemeyer U. J. Org. Chem. 1996, 61: 3677 -
14c
Laabs S.Scherrmann A.Sudau A.Diederich M.Kierig C.Nubbemeyer U. Synlett 1999, 25 -
15a
von Braun J. Chem. Ber. 1907, 40: 3914 -
15b
Cooley JH.Evain EJ. Synthesis 1989, 1 - 16
Mulzer J.Shanyoor M. Tetrahedron Lett. 1993, 34: 6545 -
17a
Martinková M.Gonda J. Tetrahedron Lett. 1997, 38: 875 -
17b
Gonda J.Bednarikova M. Tetrahedron Lett. 1997, 38: 5569 -
17c
Gonda J.Martinková M.Walko M.Zavacká E.Milos¡ Bud M.ínsk Ivana Císa I. Tetrahedron Lett. 2001, 42: 4401ová -
17d
Gonda J.Martinková M.Imrich J. Tetrahedron 2002, 58: 1611 - A Johnson rearrangement involving such a system was found to be unselective:
-
18a
Tadano K.Idogaki Y.Yamada H.Suami T. Chem Lett. 1985, 1925 -
18b
Tadano K.Idogaki Y.Yamada H.Suami T. J. Org. Chem. 1987, 52: 1201 -
19a
Gonda J.Zavacka E.Budesinsky M.Cisarova I.Podlaha J. Tetrahedron Lett. 2000, 41: 525 -
19b
Gonda J.Helland A.-C.Ernst B.Bellus D. Synthesis 1993, 729 - 20
Overman LE. Angew. Chem., Int Ed. Engl. 1984, 23: 579 ; Angew. Chem. 1984, 96, 565 -
22a
Ovaa H.Codee JDC.Lastdrager B.Overkleeft HS.van der Marel GA.van Boom JH. Tetrahedron Lett. 1999, 40: 5063 -
22b
Nishikawa T.Asai M.Ohyabu N.Yamamoto N.Fukuda Y.Isobe M. Tetrahedron 2001, 57: 3875 -
22c
Nishikawa T.Asai M.Isobe M. J. Am. Chem. Soc. 2002, 124: 7847 -
23a
Boeckman RK.Neeb MJ.Gaul MD. Tetrahedron Lett. 1995, 36: 803 -
23b
Boeckman RK.del Rosario Rico Ferreira M.Mitchell LH.Shao P. J. Am. Chem. Soc. 2002, 124: - 24
Magnus P.Westwood N. Tetrahedron Lett. 1999, 40: 4659 - 25
Fukuzaki T.Kobayashi S.Hibi T.Ikuma Y.Ishihara J.Kanoh N.Murai A. Org. Lett. 2002, 4: 2877 ; further racemic examples of model compound rearrangements are given in this reference - 26
Barrett AGM.Ahmed M.Baker SP.Baugh SPD.Braddock DC.Procopiou PA.White AJP.Williams DJ. J. Org. Chem. 2000, 65: 3716 -
27a
Vourloumis D.Kim KD.Petersen JL.Magriotis PA. J. Org. Chem. 1996, 61: 4848 -
27b For a preliminary communication
see:
Magriotis PA.Kim KD. J. Am. Chem. Soc. 1993, 115: 2972 - 28
de la Pradilla RF.Montero C.Tortosa M. Org. Lett. 2002, 4: 2373 -
29a
Tsunoda T.Nishii T.Yoshizuka M.Yamasaki C.Suzuki T.Itô S. Tetrahedron Lett. 2000, 41: 7667 -
29b For preliminary publications
see:
Tsunoda T.Sakai M.Sasaki O.Sako Y.Hondo Y. Tetrahedron Lett. 1992, 33: 1651 -
29c
Tsunoda T.Tatsuki S.Shiraishi Y.Akasaka M.Itô S. Tetrahedron Lett. 1993, 34: 3297 -
29d
Tsunoda T.Tatsuki S.Kataoka K.Itô S. Chem. Lett. 1994, 543 -
29e
Itô S.Tsunoda T. Pure Appl. Chem. 1994, 66: 2071 -
29f
Tsunoda T.Ozaki F.Shirakata N.Tamaoka Y.Yamamoto H.Itô S. Tetrahedron Lett. 1996, 37: 2463 -
30a
Laabs S.Münch W.Bats J.-W.Nubbemeyer U. Tetrahedron 2002, 58: 1317 -
30b
Zhang N.Nubbemeyer U. Synthesis 2002, 242 ; for a preliminary result see ref. 14c -
32a
Mulder JA.Hsung RP.Frederick MO.Tracey MR.Zificsak CA. Org. Lett. 2002, 4: 1383 -
32b For a synthesis of alkynyl
amides see:
Wei L.-L.Mulder JA.Xiong H.Zificsak CA.Douglas CA.Hsung RP. Tetrahedron 2001, 57: 459 -
33a Sibi
auxiliary:
Sibi MP.Porter NA. Acc. Chem. Res. 1999, 32: 163 -
33b Evans asymmetric aldol
reaction:
Evans DA. Aldrichimica Acta 1982, 15: 23 -
34a
Hungerhoff B.Metz P. Tetrahedron 1999, 55: 14941 -
34b
Hungerhoff B.Metz P. J. Org. Chem. 1997, 62: 4442 -
34c
Hungerhoff B.Metz P. GIT Fachz. Lab. 1996, 40: 690 - 35
Metz P. Tetrahedron 1993, 49: 6367 -
36a
Welch JT.Eswarakrishnan S. J. Am. Chem. Soc. 1987, 109: 6716 -
36b
Reddy KV.Rajappa S. Tetrahedron Lett. 1992, 33: 7957 -
36c
Jain S.Sinha N.Dikshit DK.Anand N. Tetrahedron Lett. 1995, 36: 8467 -
37a
Lemieux RM.Meyers AI. J. Am. Chem. Soc. 1998, 120: 5453 -
37b
Lemieux RM.Devine PM.Mechelke MF.Meyers AI. J. Org. Chem. 1999, 64: 3585 -
37c
Watson DJ.Lawrence CM.Meyers AI. Tetrahedron Lett. 2000, 41: 815 -
37d For a preliminary publication
see:
Devine PM.Meyers AI. J. Am. Chem. Soc. 1994, 116: 2633 -
37e For a palladium-catalyzed rearrangement
(moderate stereoselectivity):
Watson DJ.Devine PM.Meyers AI. Tetrahedron Lett. 2000, 41: 1363 - 39
Wilkens J.Wallbaum S.Saak W.Haase D.Pohl S.Patkar LN.Dixit AN.Chittari P.Rajappa S.Martens J. Liebigs Ann. 1996, 927 - 40
He S.Kozmin SA.Rawal VH. J. Am. Chem. Soc. 2000, 122: 190 ; additionally the commercially available C2-symmetric 2,5-bis-(methoxymethyl) pyrrolidine had been employed once resulting in a high yield and a high diastereoselectivity - 41
Dantale S.Reboul V.Metzner P.Philouze C. Chem.-Eur. J. 2002, 8: 632 -
42a
Kallmerten J.Gould TJ. J. Org. Chem. 1986, 51: 1152 -
42b For another chelate controlled
racemic ester enolate Claisen rearrangement see:
Krafft ME.Dasse OA.Jarrett S.Fievre A. J. Org. Chem. 1995, 60: 5093 -
43a
Maier S.Kazmaier U. Eur. J. Org. Chem. 2000, 1241 -
43b
Kazmaier U. J. Org. Chem. 1994, 59: 6667 -
44a
Enders D.Knopp M. Tetrahedron 1996, 52: 5805 -
44b
Enders D.Knopp M.Runsink J.Raabe G. Liebigs Ann. 1996, 1095 -
44c
Enders D.Knopp M.Runsink J.Raabe G. Angew. Chem., Int. Ed. Engl. 1995, 34: 2278 ; Angew. Chem. 1995, 107, 2442 -
45a
Dalko PI.Langlois Y. Tetrahedron Lett. 1998, 39: 2107 -
45b For a review concerning
related rearrangements see:
Kelly TR.Arvanitis A. Tetrahedron Lett. 1984, 25: 39 - 46
Roush WR.Works AB. Tetrahedron Lett. 1997, 38: 351 -
47a
Maruoka K.Saito S.Yamamoto H. J. Am. Chem. Soc. 1995, 117: 1165 -
47b Racemic catalytic variant:
Saito S.Shimada K.Yamamoto H. Synlett 1996, 720 -
47c For some early publications
see:
Maruoka K.Banno H.Yamamoto H. J. Am. Chem. Soc. 1990, 112: 7791 -
47d
Maruoka K.Yamamoto H. Tetrahedron: Asymmetry 1991, 2: 647 -
47e
Maruoka K.Yamamoto H. Synlett 1991, 793 - 48 For an early publication using a
(IPC)2BOTf:
Oh T.Wrobel Z.Devine PN. Synlett 1992, 81 - 49
Tayama E.Saito A.Ooi T.Maruoka K. Tetrahedron 2002, 58: 8307 -
50a
Corey EJ.Kania RS. J. Am. Chem. Soc. 1996, 118: 1229 -
50b
Corey EJ.Roberts BE.Dixon BR. J. Am. Chem. Soc. 1995, 117: 193 -
52a
Ito H.Sato A.Kobayashi T.Taguchi T. J. Chem. Soc., Chem. Commun. 1998, 2441 -
52b
Ito H.Sato A.Taguchi T. Tetrahedron Lett. 1997, 38: 4815 -
54a
Kazmaier U.Mues H.Krebs A. Chem.-Eur. J. 2002, 8: 1850 -
54b
Mues H.Kazmaier U. Synthesis 2001, 487 -
54c
Mues H.Kazmaier U. Synlett 2000, 1004 -
54d
Bakke M.Ohta H.Kazmaier U.Sugai T. Synthesis 1999, 1671 -
54e
Krebs A.Kazmaier U. Tetrahedron Lett. 1999, 40: 479 -
54f
Krebs A.Kazmaier U. Tetrahedron Lett. 1996, 37: 7945 -
54g
Kazmaier U.Krebs A. Angew. Chem., Int. Ed. Engl. 1995, 34: 2012 ; Angew. Chem. 1995, 107, 2213 -
54h
Kazmaier U.Maier S. J. Chem. Soc., Chem. Commun. 1995, 1991 - 55
Yoon TP.MacMillan DWC. J. Am. Chem. Soc. 2001, 123: 2911 - For potential catalysts see
-
57a
Helmchen G.Pfaltz A. Acc. Chem. Res. 2000, 33: 336 -
57b
Fache F.Schulz E.Tommasino ML.Lemaire M. Chem. Rev. 2000, 100: 2159 -
58a
Sugiura M.Nakai T. Tetrahedron Lett. 1996, 37: 7991 -
58b
Sugiura M.Yanagisawa M.Nakai T. Synlett 1995, 447 -
60a
Trost BM.Schroeder GM. J. Am. Chem. Soc. 2000, 122: 3785 -
60b
Trost BM.Toste DF. J. Am. Chem. Soc. 1998, 120: 815 -
60c For a racemic version
see:
Gester S.Metz P.Zierau O.Vollmer G. Tetrahedron 2001, 57: 1015 -
60d For a potential racemization
during aromatic Claisen rearrangements see:
Bernard AM.Cocco MT.Onnis V.Piras PP. Synthesis 1997, 41 - Generally such intermediate cations could suffer from so-called abnormal 1,3 Claisen rearrangements. A catalytic variant to generate polycyclic terpenoids has been investigated by:
-
61a
Nakamura S.Ishihara K.Yamamoto H. J. Am. Chem. Soc. 2000, 122: 8131 -
61b For further 1,3 rearrangements
(chirality transfer) see:
Shiina I.Nagasue H. Tetrahedron Lett. 2002, 43: 5837 -
61c See also:
Hashimoto H.Jin T.Karikomi M.Seki K.Hagaa K.Uyeharaa T. Tetrahedron Lett. 2002, 43: 3633 -
62a
Wood JL.Moniz GA. Org. Lett. 1999, 1: 371 -
62b
Drutu I.Krygowski ES.Wood JL. J. Org. Chem. 2001, 66: 7025 -
62c For a direct allylation
of diazoketones as a surrogate for catalyzed enantioselective Claisen rearrangements
see:
Davies HML.Ren P.Jin Q. Org. Lett. 2001, 3: 3587 -
64a
Miller SP.Morken JP. Org. Lett. 2002, 4: 2743 -
64b For further tandem processes
see: Diels-Alder/Claisen:
Soldermann N.Velker J.Vallat O.Stoeckli-Evans H.Neier R. Helv. Chim. Acta 2000, 83: 2266 -
64c
Frank SA.Works AB.Roush WR. Can. J. Chem. 2000, 78: 757 -
65a
Wipf P.Ribe S. Org. Lett. 2001, 3: 1503 -
65b
The Claisen rearrangement is an ideal precursor for olefin converting consecutive processes such as metathesis dihydroxylations etc.
-
66a
Abraham L.Czerwonka R.Hiersemann M. Angew. Chem. Int. Ed. 2001, 40: 4700 ; Angew. Chem. 2001, 113, 4835 -
66b For catalyzed racemic
rearrangements see:
Hiersemann M.Abraham L. Org. Lett. 2001, 3: 49 -
66c
Hiersemann M. Synthesis 2000, 1279 -
66d
Kaden S.Hiersemann M. Synlett 2002, 1999 -
67a
Calter M.Hollis TK.Overman LE.Ziller J.Zipp GG. J. Org. Chem. 1997, 62: 1449 -
67b
Kollis TK.Overman LE. Tetrahedron Lett. 1997, 38: 8837 -
67c
Cohen F.Overman LE. Tetrahedron: Asymmetry 1998, 9: 3213 -
67d
Donde Y.Overman LE. J. Am. Chem. Soc. 1999, 121: 2933 -
67e For the thermal and palladium-catalyzed
racemic rearrangement see:
Overman LE.Zipp GG. J. Am. Chem. Soc. 1997, 62: 2288 - 68
Kang J.Yew KH.Kim TH.Choi DH. Tetrahedron Lett. 2002, 43: 9509 -
69a
Jiang Y.Lougmire JM.Zhang X. Tetrahedron Lett. 1999, 40: 1449 -
69b
Leung P.-H.Ng K.-H.Li Y.White AJP.Williams DJ. J. Chem. Soc., Chem. Commun. 1999, 2435 -
69c
Uozumi Y.Kato K.Hayashi T. Tetrahedron: Asymmetry 1998, 9: 1065 - 70
Gais H.-J.Böhme A. J. Org. Chem. 2002, 67: 1153 - For an aza-Cope-Mannich tandem process see:
-
71a
Knight SD.Overman LE.Pairaudeau G. J. Am. Chem. Soc. 1995, 117: 5776 -
71b
For oxy-Cope-aldol tandem process see ref. [1i]
- 72 Low stereoselectivities were observed
in several anionic oxy-Cope rearrangements:
Lee Y.Lee YR.Moon O.Kwon O.Shim MS.Yun JS. J. Org. Chem. 1994, 59: 1444 - For an example where a chiral chromium arene complex did not affect the stereochemical outcome of a Cope rearrangement see:
-
73a
Mandal SK.Sarkar A. J. Chem. Soc., Perkin Trans. 1 2002, 669 -
73b For an aza-Cope rearrangement
via chromium carbene complexes see:
Barluenga J.Tomas M.Ballesteros A.Santamaria J.Suarez-Sobrino A. J. Org. Chem. 1997, 62: 9229 -
74a
Kuehne ME.Xu F. J. Org. Chem. 1997, 62: 7950 -
74b
Kuehne ME.Xu F. J. Org. Chem. 1998, 63: 9427 -
74c
Kuehne ME.Xu F. J. Org. Chem. 1998, 63: 9434 - 75
Deloisy S.Kunz H. Tetrahedron Lett. 1998, 39: 791 -
76a
Cardoso AS.Lobo AM.Prabhakar S. Tetrahedron Lett. 2000, 41: 3611 -
76b
Depew KM.Danishefsky SJ.Rosen N.Sepp-Lorenzino L. J. Am. Chem. Soc. 1996, 118: 12463 - 78
Román E.Baños M.Higes FJ.Serrano JA. Tetrahedron: Asymmetry 1998, 9: 449 - 79
Agami C.Couty F.Puchot-Kadouri C. Synlett 1998, 449 -
80a
Nokami J.Ohga M.Nakamoto H.Matsubara T.Hussain I.Kataoka K. J. Am. Chem. Soc. 2002, 123: 9168 -
80b For preliminary publications
see:
Nokami J.Anthony L.Sumida S. Chem.-Eur. J. 2000, 6: 2909 ; concept -
80c See also:
Sumida S.Ohga M.Mitani J.Nokami J. J. Am. Chem. Soc. 2000, 122: 1310 -
80d
Nokami J.Yoshizane K.Matsuura H.Sumida S. J. Am. Chem. Soc. 1998, 120: 6609 -
80e
Semeyn C.Blaauw RH.Hiemstra H.Speckamp WN. J. Org. Chem. 1997, 62: 3426 -
80f For a recent publication
(1,3 chirality transfer in 2-oxonia Cope rearrangements see:
Loh T.-P.Hu Q.-Y.Ma L.-T. Org. Lett. 2002, 4: 2389 - The reversibility of the Cope rearrangement might cause some racemization - the avoiding of such a process was recommended. Alternatively a Prins cyclization could be discussed as the basic reaction mechanism. Cope rearrangements were found to be much faster than the Prins reaction. For the role of oxonia Cope rearrangements in Prins cyclizations see:
-
81a
Rychnovsky SD.Marumoto S.Jaber JJ. Org. Lett. 2001, 3: 3815 -
81b
Marumoto S.Jaber JJ.Vitale JP.Rychnovsky SD. Org. Lett. 2002, 4: 3919 -
82a
Allin SM.Baird RD.Lins RJ. Tetrahedron Lett. 2002, 43: 4195 -
82b
Allin SM.Button MAC.Baird RD. Synlett 1998, 1117 -
82c
Allin SM.Button MAC. Tetrahedron Lett. 1998, 39: 3345-3348 -
82d For preliminary publications
see:
Allin SM.Button MAC.Shuttleworth SJ. Synlett 1997, 725 -
84a
Young Yoo H.Houk KN.Lee JK.Scialdone MA.Meyers AI. J. Am. Chem. Soc. 1998, 120: 205 -
84b
Dobson HK.LeBlanc R.Perrier H.Stephenson C.Welch TR.Macdonald D. Tetrahedron Lett. 1999, 40: 3119 -
84c
Allin SM.Button MAC. Tetrahedron Lett. 1999, 40: 3801 - 85
Tomooka K.Nagasawa A.Wei S.-Y.Nakai T. Tetrahedron Lett. 1996, 37: 8899 - 87
Tomooka K.Nagasawa A.Wei S.-Y.Nakai T. Tetrahedron Lett. 1996, 37: 8995 -
88a
Schneider C.Rehfeuter M. Tetrahedron Lett. 1998, 39: 9 -
88b
Black WC.Giroux A.Greidanus G. Tetrahedron Lett. 1996, 37: 4471 - 89
Paquette LA.Tae J. J. Org. Chem. 1998, 63: 2022 - 90
Davies HML.Ahmed G.Churchill MR. J. Am. Chem. Soc. 1996, 118: 10774 - For potential catalysts see:
-
91a
Helmchen G.Pfaltz A. Acc. Chem. Res. 2000, 33: 336 -
91b
Fache F.Schulz E.Tommasino ML.Lemaire M. Chem. Rev. 2000, 100: 2159 -
92a
Davies HWL.Hodges ML. J. Org. Chem. 2002, 65: 5683 -
92b
Davies HML.Doan BD. J. Org. Chem. 1999, 64: 8501 -
92c
Davies HML.Stafford DG.Doan BD.Houser JH. J. Am. Chem. Soc. 1998, 120: 3326 -
92d
Davies HML.Doan BD. Tetrahedron Lett. 1996, 37: 3967 -
92e For a racemic series synthesizing azabicyclo[3,2,2]nonanes
see:
Davies HML.Hodges LM.Thornley CT. Tetrahedron Lett. 1998, 39: 2707 -
92f Syntheses of tremulenolides:
Davies HML.Doan BD. J. Org. Chem. 1998, 63: 657 - 94
Claisen L. Ber. Dtsch. Chem. Ges. 1912, 45: 1423 -
95a
Cope AC.Hardy EM. J. Am. Chem. Soc. 1940, 62: 441 -
95b
Cope AC.Hoyle KE.Heyl D. J. Am. Chem. Soc. 1941, 63: 1843 -
95c
Cope AC.Hofmann CM.Hardy EM. J. Am. Chem. Soc. 1941, 63: 1852 -
95d
Cope AC.Field L. J. Am. Chem. Soc. 1949, 71: 1589 -
95e
Whyte DE.Cope AC. J. Am. Chem. Soc. 1943, 65: 1999 -
96a
Carroll MF. J. Chem. Soc. 1940, 704 -
96b
Carroll MF. J. Chem. Soc. 1940, 1266 -
96c
Carroll MF. J. Chem. Soc. 1941, 507 -
96d
Wick AE.Felix D.Steen K.Eschenmoser A. Helv. Chim. Acta 1964, 47: 2425 -
96e
Wick AE.Felix D.Gschwend-Steen K.Eschenmoser A. Helv. Chim. Acta 1969, 52: 1030 -
96f
Johnson WS.Werthemann L.Bartlett WR.Brocksom TJ.Li TT.Faulkner DJ.Peterson MR. J. Am. Chem. Soc. 1970, 92: 741 -
96g
Ireland RE.Mueller RH. J. Am. Chem. Soc. 1972, 94: 5897 -
96h
Ireland RE.Willard AK. Tetrahedron Lett. 1975, 16: 3975 -
96i
Ireland RE.Mueller RH.Willard AK. J. Am. Chem. Soc. 1976, 98: 2868 -
96j
Baldwin JE.Walker JA. J. Chem. Soc., Chem. Commun. 1973, 117 -
96k
Greuter H.Lang RW.Romann AJ. Tetrahedron Lett. 1988, 29: 3291 -
96l
Malherbe R.Bellus D. Helv. Chim. Acta 1978, 61: 3096 -
96m
Denmark SE.Harmata MA. J. Am. Chem. Soc. 1982, 104: 4972 -
96n
Denmark SE.Harmata MA. J. Org. Chem. 1983, 48: 3369 -
96o
Denmark SE.Harmata MA. Tetrahedron Lett. 1984, 25: 1543 -
96p
Bergmann E.Corte H. J. Chem. Soc. 1935, 1363 -
96q
Lauer WM.Kilburn EI. J. Am. Chem. Soc. 1937, 59: 2586 -
96r
Hurd CD.Pollack MA. J. Am. Chem. Soc. 1938, 60: 1905 -
96s
Hurd CD.Pollack MA. J. Org. Chem. 1939, 4: 550 -
96t
Arnold RT.Searles S. J. Am. Chem. Soc. 1949, 71: 1150 -
96u
Arnold RT.Parham WE.Dodson RM. J. Am. Chem. Soc. 1949, 71: 2439 -
96v
Burgstrahler AW.Nordin IC. J. Am. Chem. Soc. 1961, 83: 198 -
96w
Marbet R.Saucy G. Helv. Chim. Acta 1967, 50: 2091 -
97a
Fehr C.Galindo JA. Angew. Chem. Int. Ed. 2000, 39: 569 ; Angew. Chem. 2000, 112, 581 -
97b
Hong JH.Gao M.-Y.Choi Y.Cheng Y.-C.Schinazi RF.Chu CK. Carbohydr. Res. 2000, 328: 37 -
97c
Agami C.Couty F.Evano G. Eur. J. Org. Chem. 2002, 29 -
97d
Görth FC.Umland A.Brückner R. Eur. J. Org. Chem. 1998, 1055 -
97e
Brenna E.Fuganti C.Grasselli P.Serra S. Eur. J. Org. Chem. 2001, 1349 -
97f
Trost BM.Lee CB. J. Am. Chem. Soc. 2001, 123: 3687 -
97g
Corey EJ.Guzman-Perez A.Lazerwith SE. J. Am. Chem. Soc. 1997, 119: 11769 -
97h
Wood JL.Moniz GA.Pflum DA.Stoltz BM.Holubec AA.Dietrich HJ. J. Am. Chem. Soc. 1999, 121: 1748 -
97i
He F.Bo Y.Altom JD.Corey EJ. J. Am. Chem. Soc. 1999, 121: 6771 -
97j
Hodgson DM.Gibbs AR.Drew MGD. J. Chem. Soc., Perkin Trans. 1 1999, 3579 -
97k
Morimoto Y.Takaishi M.Kinoshita T.Sakaguchi K.Shibata K. J. Chem. Soc., Chem. Commun. 2002, 42 -
97l
Goujon J.-Y.Duval A.Kirschleger B. J. Chem. Soc., Perkin Trans. 1 2002, 496 -
97m
Roulland E.Monneret C.Florent J.-C. J. Org. Chem. 2002, 67: 4399 -
97n
Angle SR.Henry RM. J. Org. Chem. 1998, 63: 7490 -
97o
Burke SD.Sametz GM. Org. Lett. 1999, 1: 71 -
97p
Mapp AK.Heathcock CH. J. Org. Chem. 1999, 64: 23 -
97q
Hodgson DM.Gibbs AR. Synlett 1997, 657 -
97r
Harrison JR.Holmes AB.Collins I. Synlett 1999, 972 -
97s
Schaus JV.Jain N.Panek JS. Tetrahedron 2000, 56: 10263 -
97t
Chandrasekhar S.Venkat Reddy M. Tetrahedron 2000, 56: 6339 -
97u
Brenna E.Caraccia N.Fuganti F.Fuganti D.Grasselli P. Tetrahedron: Asymmetry 1997, 8: 3801 -
97v
Amat M.Dolors Coil M.Passarella D.Bosch J. Tetrahedron: Asymmetry 1997, 8: 2775 -
97w
Konno T.Kitazume T. Tetrahedron: Asymmetry 1997, 8: 223 -
97x
Guz NR.Lorenz P.Stermitz FR. Tetrahedron Lett. 2001, 42: 6491 -
97y
Zhou B.Edmondson S.Padron J.Danishefsky SJ. Tetrahedron Lett. 2000, 41: 2039 -
97z
Ceccarelli S.Piarulli U.Gennari C. Tetrahedron Lett. 1999, 40: 153 -
98a
Kazmaier U.Schneider C. Tetrahedron Lett. 1998, 39: 817 -
98b
Rutherford AP.Hartley RC. Tetrahedron Lett. 2000, 41: 737 -
98c
Paquette LA.Gao Z.Ni Z.Smith GF. Tetrahedron Lett. 1997, 38: 1271 -
98d
Paquette LA.Backhaus D.Braun R.Underiner TL.Fuchs K. J. Am. Chem. Soc. 1997, 119: 9662 -
98e
Martnez AG.Vilar ET.Fraile AG.Moya Cerero S.Maroto BL. Tetrahedron: Asymmetry 2002, 13: 17 -
98f
Bonjoch J.Sole D. Chem. Rev. 2000, 100: 3455 -
98g
Koch G.Janser P.Kottirsch G.Romero-Giron E. Tetrahedron Lett. 2002, 43: 4837 -
98h
Chen YK.Lurain AE.Walsh PJ. J. Am. Chem. Soc. 2002, 124: 12225 -
98i
Hatcher MA.Posner GH. Tetrahedron Lett. 2002, 43: 5009 -
98j
Srikrishna A.Anebouselvy K. Tetrahedron Lett. 2002, 3: 2769
References
For the discussion of a stepwise reaction mechanism see chapter 6 and the literature cited therein.
31The Ireland-type rearrangements are characterized by metal enolates bearing chiral ligands. These reactions are discussed in chapter 5 (vide infra).
38The reversibility had been proven by subjecting the pure product to the reaction conditions resulting in the Claisen reactant and potentially some other diastereomers.
51The use of Hünig’s base resulted in a disappointing yield of only 36%. Barton’s base: pentaisopropylguanidine.
53The boron ester formation was crucial for the Claisen rearrangement to proceed. In the absence of an o-OH group the reaction failed. The o-OH group could be replaced by a carboxylic acid function but such conversion resulted a lower yield and a decreased enantioselectivity. Additionally some p-product was isolated.
56However this special variant did obviously not suffer from any von Braun type degradation or from any [2+2]-cycloadditions as reported in previous publications and references cited therein).
59Reacting non-symmetric enol ethers the palladium-catalyzed version preferentially gave the less-substituted vinyl systems. The rearrangement passed through a boat-like transition state. In contrast the proton-catalyzed reaction gave the higher substituted vinylether and the thermal rearrangement (100 °C) passed through a chair-like transition state. Regio- and stereochemistry could be influenced by a careful choice of the reaction conditions. For the discussion of a two-step reaction mechanism see Overman amidate rearrangements. [67]
63The rhodium catalyst did not influence the Claisen rearrangement step.
77The 3,5-rearrangement can be described as an iminium salt olefin addition and a subsequent fragmentation (cation stabilization). No new stereogenic center was constructed.
83n-BuLi was found to be the base of choice to induce the anionic amino Cope rearrangements. Experiments using alternative strong bases such as LDA and KHMDS failed.
86In contrast to the Oppolzer sultams the corresponding Evans auxiliary gave only moderate chiral induction of about 50% de building-up the new stereogenic center.
93For a mechanistic discussion concerning the stereochemical outcome of the asymmetric catalyzed cyclopropanation see the original references.