Abstract
The synthesis of new complex structures is still a challenge
in preparative organic chemistry. Focusing on the generation of
defined stereogenic centers, the [3,3]-sigmatropic
rearrangements are known as reliable reactions. Always, a highly
ordered transition state must be passed through, which allows the
shift of chiral information from the reactant into the nascent product.
Generally, the complete [1,3]- and, frequently,
the [1,4]-chirality transfer enables one to predict
the configuration of the new centers.
This review focuses on Claisen and Cope rearrangements, which adopt
the chiral information via a so termed asymmetric induction. This
means, that the directing chiral subunit is placed outside of the six
centers of the rearrangement system being reorganized during the
course of the [3,3]-sigmatropic reaction.
Reviewing the literature since 1995, enantioselective Claisen
rearrangements have been widely investigated. The unique sense of
the reaction allows the conversion of an easily accessible C atom-heteroatom
bond into a new C-C bond making this rearrangement useful
for constructing complex molecules. In contrast, the Cope rearrangement
is reversible. One crucial requirement is to force the process to
completion with respect to the desired product. Hence ‘enantioselective
Cope rearrangements’ are always included as one step in
a reaction cascade to guarantee the unique sense of the process.
Analyzing such reactions in more detail, the chirality-inducing step
is run prior to the Cope rearrangement. Thus, the [3,3]-sigmatropic
rearrangement is conducted under the well-known [1,3]-chirality
transfer conditions.
1 Introduction
2 Asymmetric Claisen Rearrangements: Classification
3 Remote Stereocontrol in Claisen Rearrangements
3.1 Stereogenic Center at C1
3.2 Stereogenic Center at C6
3.3 Stereogenic Center in Other Positions
4 Auxiliary Control in Claisen Rearrangements
4.1 Auxiliary Attached to Position X
4.2 Auxiliary Attached to Position Y
4.3 Auxiliary Attached to Position Z
4.4 Miscellaneous
5 Chiral Metal Complex Directed Claisen Rearrangements
6 Enantioselective Catalyzed Claisen Rearrangements
7 Asymmetric Cope Rearrangements
7.1 Remote Stereocontrol in Cope Rearrangements
7.2 Auxiliary Control in Cope Rearrangements
7.3 Catalyst Control in Cope Rearrangements
8 Summary
Key words
asymmetric Claisen rearrangement - Cope rearrangement - chiral auxiliary - chiral metal complex - chiral
catalyst
References
For recent reviews on asymmetric
Claisen and Cope rearrangements see:
1a
Frauenrath H. In Houben-Weyl (Methods
of Organic Chemistry), Stereoselective Synthesis
Vol.
E21d:
Helmchen G.
Hoffmann RW.
Mulzer J.
Schaumann E.
Thieme;
Stuttgart:
1995.
p.3301
1b
Metzner P.
Pure
Appl. Chem.
1996,
68:
863
1c
Enders D.
Knopp M.
Schiffers R.
Tetrahedron: Asymmetry
1996,
7:
1847
1d
Ito H.
Taguchi T.
Chem. Soc. Rev.
1999,
28:
43
1e
Kazmaier U.
Maier S.
Zumpe FL.
Synlett
2000,
1523
1f
Allin SM.
Baird RD.
Curr. Org.
Chem.
2001,
395
1g
Hiersemann M.
Abraham L.
Eur. J. Org. Chem.
2002,
1461
1h
Chai Y.
Hong S.-P.
Lindsay HA.
McFarland C.
McIntosh MC.
Tetrahedron
2002,
58:
2905
1i
Paquette LA.
Tetrahedron
1997,
53:
1397
For catalytic asymmetric reactions
see:
2a
Avalos M.
Babiano R.
Cintas P.
Jiménez JL.
Palacios JC.
Tetrahedron: Asymmetry
1997,
8:
2997
2b
Brunel J.-M.
Luukas TO.
Kagan HB.
Tetrahedron: Asymmetry
1998,
9:
1941
2c
Kolb HC.
VanNieuwenhze MS.
Sharpless KB.
Chem. Rev.
1994,
94:
2483
3a
Palmer MJ.
Wills M.
Tetrahedron:
Asymmetry
1999,
10:
2045
3b
Daviero P.
Zanda M.
Tetrahedron: Asymmetry
2001,
12:
2225
4a
Gotor V.
Rebolledo F.
Liz R.
Tetrahedron: Asymmetry
2001,
12:
513
4b
Enzyme Catalyst
in Organic Synthesis
Drauz K.
Waldmann H.
VCH;
Weinheim, Germany:
1995.
5
Sreekumar R.
Padmakumar R.
Tetrahedron Lett.
1997,
38:
2413
6
Beslin P.
Lelong B.
Tetrahedron
1997,
53:
17253
7
Cuzzupe AN.
Di Florio R.
Rizzacasa MA.
J.
Org. Chem.
2002,
67:
4392
8a
Pratt LM.
Bowles SA.
Courtney SF.
Hidden C.
Lewis CN.
Martin FM.
Todd RS.
Synlett
1998,
531
8b
Pratt LM.
Beckett RP.
Bellamy CL.
Corkill DJ.
Cossins J.
Courtney PF.
Davies SJ.
Davidson AH.
Drummond AH.
Helfrich K.
Lewis CN.
Mangan M.
Martin FM.
Miller K.
Nayee P.
Ricketts ML.
Thomas W.
Todd RS.
Whittaker M.
Bioorg.
Med. Chem. Lett.
1998,
8:
1359
9a
Yamazaki T.
Shinohara N.
Kitazume T.
Sato S.
J. Org.
Chem.
1995,
60:
8140
9b
Yamazaki T.
Ichige T.
Takei S.
Kawashita S.
Kitazume T.
Kubota T.
Org. Lett.
2001,
3:
2915
9c For a publication concerning
Michael additions see: Shinohara N.
Haga J.
Yamazaki T.
Kitazume T.
Nakamura S.
J. Org.
Chem.
1995,
60:
4363
9d For the Cieplack model
see: Cieplak AS.
Chem. Rev.
1999,
99:
1265
9e For a publication on racemic
Michael-Ireland sequences see: Eriksson M.
Hjelmencrantz A.
Nilsson M.
Olsson T.
Tetrahedron
1995,
51:
12631
10
Hagiwara H.
Sakai H.
Uchiyama T.
Ito Y.
Morita N.
Hoshi T.
Suzuki T.
Ando M.
J.
Chem. Soc., Perkin Trans. 1
2002,
583
11
Becker M.
Krause N.
Liebigs Ann. Recueil
1997,
725
12a
Alayrac C.
Fromont C.
Metzner P.
Anh NT.
Angew. Chem.,
Int. Ed. Engl.
1997,
36:
371 ; Angew. Chem . 1997 , 109 , 418
12b
Nowaczyk S.
Alayrac C.
Reboul V.
Metzner P.
Averbuch-Pouchot M.-T.
J.
Org. Chem.
2001,
66:
7841
12c For preparation of optically
active sulfoxides see: Alayrac C.
Nowaczyk S.
Lemarie M.
Metzner P.
Synthesis
1999,
669
12d
Alayrac C.
Metzner P.
Tetrahedron Lett.
2000,
41:
2537
13a
Ernst B.
Gonda J.
Jeschke R.
Nubbemeyer U.
Öhrlein R.
Bellus D.
Helv. Chim.
Acta
1997,
80:
876
13b
Gonda J.
Martinková M.
Ernst B.
Bellus D.
Tetrahedron
2001,
57:
5607
13c For a preliminary publication
see: Nubbemeyer U.
Öhrlein R.
Gonda J.
Ernst B.
Bellus D.
Angew. Chem., Int. Ed Engl.
1991,
30:
1465 ; Angew. Chem. 1991 , 103 , 1533
14a
Nubbemeyer U.
J. Org. Chem.
1995,
60:
3773
14b
Nubbemeyer U.
J.
Org. Chem.
1996,
61:
3677
14c
Laabs S.
Scherrmann A.
Sudau A.
Diederich M.
Kierig C.
Nubbemeyer U.
Synlett
1999,
25
15a
von Braun J.
Chem. Ber.
1907,
40:
3914
15b
Cooley JH.
Evain EJ.
Synthesis
1989,
1
16
Mulzer J.
Shanyoor M.
Tetrahedron Lett.
1993,
34:
6545
17a
Martinková M.
Gonda J.
Tetrahedron
Lett.
1997,
38:
875
17b
Gonda J.
Bednarikova M.
Tetrahedron Lett.
1997,
38:
5569
17c
Gonda J.
Martinková M.
Walko M.
Zavacká E.
Milos¡ Bud
ínsk M.
Ivana
Císa ová I.
Tetrahedron
Lett.
2001,
42:
4401
17d
Gonda J.
Martinková M.
Imrich J.
Tetrahedron
2002,
58:
1611
A Johnson rearrangement involving
such a system was found to be unselective:
18a
Tadano K.
Idogaki Y.
Yamada H.
Suami T.
Chem Lett.
1985,
1925
18b
Tadano K.
Idogaki Y.
Yamada H.
Suami T.
J. Org. Chem.
1987,
52:
1201
19a
Gonda J.
Zavacka E.
Budesinsky M.
Cisarova I.
Podlaha J.
Tetrahedron Lett.
2000,
41:
525
19b
Gonda J.
Helland A.-C.
Ernst B.
Bellus D.
Synthesis
1993,
729
20
Overman LE.
Angew.
Chem., Int Ed. Engl.
1984,
23:
579 ; Angew. Chem.
1984 , 96 , 565
21 For the discussion of a stepwise reaction
mechanism see chapter 6 and the literature cited therein.
22a
Ovaa H.
Codee JDC.
Lastdrager B.
Overkleeft HS.
van der Marel GA.
van Boom JH.
Tetrahedron Lett.
1999,
40:
5063
22b
Nishikawa T.
Asai M.
Ohyabu N.
Yamamoto N.
Fukuda Y.
Isobe M.
Tetrahedron
2001,
57:
3875
22c
Nishikawa T.
Asai M.
Isobe M.
J.
Am. Chem. Soc.
2002,
124:
7847
23a
Boeckman RK.
Neeb MJ.
Gaul MD.
Tetrahedron
Lett.
1995,
36:
803
23b
Boeckman RK.
del Rosario Rico Ferreira M.
Mitchell LH.
Shao P.
J. Am.
Chem. Soc.
2002,
124:
24
Magnus P.
Westwood N.
Tetrahedron Lett.
1999,
40:
4659
25
Fukuzaki T.
Kobayashi S.
Hibi T.
Ikuma Y.
Ishihara J.
Kanoh N.
Murai A.
Org.
Lett.
2002,
4:
2877 ;
further racemic examples of model compound rearrangements are given
in this reference
26
Barrett AGM.
Ahmed M.
Baker SP.
Baugh SPD.
Braddock DC.
Procopiou PA.
White AJP.
Williams DJ.
J. Org. Chem.
2000,
65:
3716
27a
Vourloumis D.
Kim KD.
Petersen JL.
Magriotis PA.
J. Org. Chem.
1996,
61:
4848
27b For a preliminary communication
see: Magriotis PA.
Kim KD.
J. Am. Chem. Soc.
1993,
115:
2972
28
de la Pradilla RF.
Montero C.
Tortosa M.
Org. Lett.
2002,
4:
2373
29a
Tsunoda T.
Nishii T.
Yoshizuka M.
Yamasaki C.
Suzuki T.
Itô S.
Tetrahedron
Lett.
2000,
41:
7667
29b For preliminary publications
see: Tsunoda T.
Sakai M.
Sasaki O.
Sako Y.
Hondo Y.
Tetrahedron Lett.
1992,
33:
1651
29c
Tsunoda T.
Tatsuki S.
Shiraishi Y.
Akasaka M.
Itô S.
Tetrahedron
Lett.
1993,
34:
3297
29d
Tsunoda T.
Tatsuki S.
Kataoka K.
Itô S.
Chem. Lett.
1994,
543
29e
Itô S.
Tsunoda T.
Pure Appl. Chem.
1994,
66:
2071
29f
Tsunoda T.
Ozaki F.
Shirakata N.
Tamaoka Y.
Yamamoto H.
Itô S.
Tetrahedron Lett.
1996,
37:
2463
30a
Laabs S.
Münch W.
Bats J.-W.
Nubbemeyer U.
Tetrahedron
2002,
58:
1317
30b
Zhang N.
Nubbemeyer U.
Synthesis
2002,
242 ; for a preliminary result see ref. 14c
31 The Ireland-type rearrangements are
characterized by metal enolates bearing chiral ligands. These reactions
are discussed in chapter 5 (vide infra).
32a
Mulder JA.
Hsung RP.
Frederick MO.
Tracey MR.
Zificsak CA.
Org.
Lett.
2002,
4:
1383
32b For a synthesis of alkynyl
amides see: Wei L.-L.
Mulder JA.
Xiong H.
Zificsak CA.
Douglas CA.
Hsung RP.
Tetrahedron
2001,
57:
459
33a Sibi
auxiliary: Sibi MP.
Porter NA.
Acc. Chem. Res.
1999,
32:
163
33b Evans asymmetric aldol
reaction: Evans DA.
Aldrichimica
Acta
1982,
15:
23
34a
Hungerhoff B.
Metz P.
Tetrahedron
1999,
55:
14941
34b
Hungerhoff B.
Metz P.
J. Org. Chem.
1997,
62:
4442
34c
Hungerhoff B.
Metz P.
GIT Fachz. Lab.
1996,
40:
690
35
Metz P.
Tetrahedron
1993,
49:
6367
36a
Welch JT.
Eswarakrishnan S.
J.
Am. Chem. Soc.
1987,
109:
6716
36b
Reddy KV.
Rajappa S.
Tetrahedron
Lett.
1992,
33:
7957
36c
Jain S.
Sinha N.
Dikshit DK.
Anand N.
Tetrahedron Lett.
1995,
36:
8467
37a
Lemieux RM.
Meyers AI.
J. Am. Chem. Soc.
1998,
120:
5453
37b
Lemieux RM.
Devine PM.
Mechelke MF.
Meyers AI.
J.
Org. Chem.
1999,
64:
3585
37c
Watson DJ.
Lawrence CM.
Meyers AI.
Tetrahedron Lett.
2000,
41:
815
37d For a preliminary publication
see: Devine PM.
Meyers AI.
J. Am. Chem. Soc.
1994,
116:
2633
37e For a palladium-catalyzed rearrangement
(moderate stereoselectivity): Watson DJ.
Devine PM.
Meyers AI.
Tetrahedron Lett.
2000,
41:
1363
38 The reversibility had been proven
by subjecting the pure product to the reaction conditions resulting
in the Claisen reactant and potentially some other diastereomers.
39
Wilkens J.
Wallbaum S.
Saak W.
Haase D.
Pohl S.
Patkar LN.
Dixit AN.
Chittari P.
Rajappa S.
Martens J.
Liebigs Ann.
1996,
927
40
He S.
Kozmin SA.
Rawal VH.
J.
Am. Chem. Soc.
2000,
122:
190 ;
additionally the commercially available C2 -symmetric
2,5-bis-(methoxymethyl) pyrrolidine had been employed once resulting
in a high yield and a high diastereoselectivity
41
Dantale S.
Reboul V.
Metzner P.
Philouze C.
Chem.-Eur. J.
2002,
8:
632
42a
Kallmerten J.
Gould TJ.
J.
Org. Chem.
1986,
51:
1152
42b For another chelate controlled
racemic ester enolate Claisen rearrangement see: Krafft ME.
Dasse OA.
Jarrett S.
Fievre A.
J.
Org. Chem.
1995,
60:
5093
43a
Maier S.
Kazmaier U.
Eur.
J. Org. Chem.
2000,
1241
43b
Kazmaier U.
J.
Org. Chem.
1994,
59:
6667
44a
Enders D.
Knopp M.
Tetrahedron
1996,
52:
5805
44b
Enders D.
Knopp M.
Runsink J.
Raabe G.
Liebigs Ann.
1996,
1095
44c
Enders D.
Knopp M.
Runsink J.
Raabe G.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2278 ; Angew. Chem. 1995 , 107 , 2442
45a
Dalko PI.
Langlois Y.
Tetrahedron
Lett.
1998,
39:
2107
45b For a review concerning
related rearrangements see: Kelly TR.
Arvanitis A.
Tetrahedron Lett.
1984,
25:
39
46
Roush WR.
Works AB.
Tetrahedron Lett.
1997,
38:
351
47a
Maruoka K.
Saito S.
Yamamoto H.
J. Am. Chem. Soc.
1995,
117:
1165
47b Racemic catalytic variant: Saito S.
Shimada K.
Yamamoto H.
Synlett
1996,
720
47c For some early publications
see: Maruoka K.
Banno H.
Yamamoto H.
J. Am. Chem. Soc.
1990,
112:
7791
47d
Maruoka K.
Yamamoto H.
Tetrahedron: Asymmetry
1991,
2:
647
47e
Maruoka K.
Yamamoto H.
Synlett
1991,
793
48 For an early publication using a
(IPC)2 BOTf: Oh T.
Wrobel Z.
Devine PN.
Synlett
1992,
81
49
Tayama E.
Saito A.
Ooi T.
Maruoka K.
Tetrahedron
2002,
58:
8307
50a
Corey EJ.
Kania RS.
J.
Am. Chem. Soc.
1996,
118:
1229
50b
Corey EJ.
Roberts BE.
Dixon BR.
J. Am. Chem. Soc.
1995,
117:
193
51 The use of Hünig’s
base resulted in a disappointing yield of only 36%. Barton’s
base: pentaisopropylguanidine.
52a
Ito H.
Sato A.
Kobayashi T.
Taguchi T.
J. Chem. Soc.,
Chem. Commun.
1998,
2441
52b
Ito H.
Sato A.
Taguchi T.
Tetrahedron
Lett.
1997,
38:
4815
53 The boron ester formation was crucial
for the Claisen rearrangement to proceed. In the absence of an o -OH group the reaction failed. The o -OH group could be replaced by a carboxylic
acid function but such conversion resulted a lower yield and a decreased
enantioselectivity. Additionally some p -product
was isolated.
54a
Kazmaier U.
Mues H.
Krebs A.
Chem.-Eur. J.
2002,
8:
1850
54b
Mues H.
Kazmaier U.
Synthesis
2001,
487
54c
Mues H.
Kazmaier U.
Synlett
2000,
1004
54d
Bakke M.
Ohta H.
Kazmaier U.
Sugai T.
Synthesis
1999,
1671
54e
Krebs A.
Kazmaier U.
Tetrahedron Lett.
1999,
40:
479
54f
Krebs A.
Kazmaier U.
Tetrahedron Lett.
1996,
37:
7945
54g
Kazmaier U.
Krebs A.
Angew. Chem., Int. Ed. Engl.
1995,
34:
2012 ; Angew. Chem. 1995 , 107 , 2213
54h
Kazmaier U.
Maier S.
J. Chem. Soc., Chem. Commun.
1995,
1991
55
Yoon TP.
MacMillan DWC.
J. Am.
Chem. Soc.
2001,
123:
2911
56 However this special variant did obviously
not suffer from any von Braun type degradation or from any [2+2]-cycloadditions
as reported in previous publications and references cited therein).
For potential catalysts see
57a
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
57b
Fache F.
Schulz E.
Tommasino ML.
Lemaire M.
Chem. Rev.
2000,
100:
2159
58a
Sugiura M.
Nakai T.
Tetrahedron
Lett.
1996,
37:
7991
58b
Sugiura M.
Yanagisawa M.
Nakai T.
Synlett
1995,
447
59 Reacting non-symmetric enol ethers
the palladium-catalyzed version preferentially gave the less-substituted vinyl
systems. The rearrangement passed through a boat-like transition
state. In contrast the proton-catalyzed reaction gave the higher
substituted vinylether and the thermal rearrangement (100 °C)
passed through a chair-like transition state. Regio- and stereochemistry
could be influenced by a careful choice of the reaction conditions.
For the discussion of a two-step reaction mechanism see Overman
amidate rearrangements.
[67 ]
60a
Trost BM.
Schroeder GM.
J. Am. Chem. Soc.
2000,
122:
3785
60b
Trost BM.
Toste DF.
J.
Am. Chem. Soc.
1998,
120:
815
60c For a racemic version
see: Gester S.
Metz P.
Zierau O.
Vollmer G.
Tetrahedron
2001,
57:
1015
60d For a potential racemization
during aromatic Claisen rearrangements see: Bernard AM.
Cocco MT.
Onnis V.
Piras PP.
Synthesis
1997,
41
Generally such intermediate cations
could suffer from so-called abnormal 1,3 Claisen rearrangements.
A catalytic variant to generate polycyclic terpenoids has been investigated
by:
61a
Nakamura S.
Ishihara K.
Yamamoto H.
J.
Am. Chem. Soc.
2000,
122:
8131
61b For further 1,3 rearrangements
(chirality transfer) see: Shiina I.
Nagasue H.
Tetrahedron Lett.
2002,
43:
5837
61c See also: Hashimoto H.
Jin T.
Karikomi M.
Seki K.
Hagaa K.
Uyeharaa T.
Tetrahedron Lett.
2002,
43:
3633
62a
Wood JL.
Moniz GA.
Org.
Lett.
1999,
1:
371
62b
Drutu I.
Krygowski ES.
Wood JL.
J. Org. Chem.
2001,
66:
7025
62c For a direct allylation
of diazoketones as a surrogate for catalyzed enantioselective Claisen rearrangements
see: Davies HML.
Ren P.
Jin Q.
Org. Lett.
2001,
3:
3587
63 The rhodium catalyst did not influence
the Claisen rearrangement step.
64a
Miller SP.
Morken JP.
Org. Lett.
2002,
4:
2743
64b For further tandem processes
see: Diels-Alder/Claisen: Soldermann N.
Velker J.
Vallat O.
Stoeckli-Evans H.
Neier R.
Helv.
Chim. Acta
2000,
83:
2266
64c
Frank SA.
Works AB.
Roush WR.
Can. J. Chem.
2000,
78:
757
65a
Wipf P.
Ribe S.
Org.
Lett.
2001,
3:
1503
65b The Claisen rearrangement
is an ideal precursor for olefin converting consecutive processes
such as metathesis dihydroxylations etc.
66a
Abraham L.
Czerwonka R.
Hiersemann M.
Angew. Chem. Int. Ed.
2001,
40:
4700 ; Angew. Chem.
2001 , 113 , 4835
66b For catalyzed racemic
rearrangements see: Hiersemann M.
Abraham L.
Org. Lett.
2001,
3:
49
66c
Hiersemann M.
Synthesis
2000,
1279
66d
Kaden S.
Hiersemann M.
Synlett
2002,
1999
67a
Calter M.
Hollis TK.
Overman LE.
Ziller J.
Zipp GG.
J. Org. Chem.
1997,
62:
1449
67b
Kollis TK.
Overman LE.
Tetrahedron
Lett.
1997,
38:
8837
67c
Cohen F.
Overman LE.
Tetrahedron: Asymmetry
1998,
9:
3213
67d
Donde Y.
Overman LE.
J. Am. Chem. Soc.
1999,
121:
2933
67e For the thermal and palladium-catalyzed
racemic rearrangement see: Overman LE.
Zipp GG.
J. Am. Chem. Soc.
1997,
62:
2288
68
Kang J.
Yew KH.
Kim TH.
Choi DH.
Tetrahedron Lett.
2002,
43:
9509
69a
Jiang Y.
Lougmire JM.
Zhang X.
Tetrahedron Lett.
1999,
40:
1449
69b
Leung P.-H.
Ng K.-H.
Li Y.
White AJP.
Williams DJ.
J.
Chem. Soc., Chem. Commun.
1999,
2435
69c
Uozumi Y.
Kato K.
Hayashi T.
Tetrahedron:
Asymmetry
1998,
9:
1065
70
Gais H.-J.
Böhme A.
J. Org. Chem.
2002,
67:
1153
For an aza-Cope-Mannich
tandem process see:
71a
Knight SD.
Overman LE.
Pairaudeau G.
J. Am. Chem. Soc.
1995,
117:
5776
71b For oxy-Cope-aldol
tandem process see ref.
[1i ]
72 Low stereoselectivities were observed
in several anionic oxy-Cope rearrangements: Lee Y.
Lee YR.
Moon O.
Kwon O.
Shim MS.
Yun JS.
J. Org. Chem.
1994,
59:
1444
For an example where a chiral chromium
arene complex did not affect the stereochemical outcome of a Cope rearrangement
see:
73a
Mandal SK.
Sarkar A.
J. Chem. Soc.,
Perkin Trans. 1
2002,
669
73b For an aza-Cope rearrangement
via chromium carbene complexes see: Barluenga J.
Tomas M.
Ballesteros A.
Santamaria J.
Suarez-Sobrino A.
J.
Org. Chem.
1997,
62:
9229
74a
Kuehne ME.
Xu F.
J.
Org. Chem.
1997,
62:
7950
74b
Kuehne ME.
Xu F.
J. Org. Chem.
1998,
63:
9427
74c
Kuehne ME.
Xu F.
J. Org. Chem.
1998,
63:
9434
75
Deloisy S.
Kunz H.
Tetrahedron Lett.
1998,
39:
791
76a
Cardoso AS.
Lobo AM.
Prabhakar S.
Tetrahedron Lett.
2000,
41:
3611
76b
Depew KM.
Danishefsky SJ.
Rosen N.
Sepp-Lorenzino L.
J.
Am. Chem. Soc.
1996,
118:
12463
77 The 3,5-rearrangement can be described
as an iminium salt olefin addition and a subsequent fragmentation
(cation stabilization). No new stereogenic center was constructed.
78
Román E.
Baños M.
Higes FJ.
Serrano JA.
Tetrahedron: Asymmetry
1998,
9:
449
79
Agami C.
Couty F.
Puchot-Kadouri C.
Synlett
1998,
449
80a
Nokami J.
Ohga M.
Nakamoto H.
Matsubara T.
Hussain I.
Kataoka K.
J. Am. Chem.
Soc.
2002,
123:
9168
80b For preliminary publications
see: Nokami J.
Anthony L.
Sumida S.
Chem.-Eur. J.
2000,
6:
2909 ; concept
80c See also: Sumida S.
Ohga M.
Mitani J.
Nokami J.
J. Am. Chem. Soc.
2000,
122:
1310
80d
Nokami J.
Yoshizane K.
Matsuura H.
Sumida S.
J. Am. Chem. Soc.
1998,
120:
6609
80e
Semeyn C.
Blaauw RH.
Hiemstra H.
Speckamp WN.
J. Org. Chem.
1997,
62:
3426
80f For a recent publication
(1,3 chirality transfer in 2-oxonia Cope rearrangements see: Loh T.-P.
Hu Q.-Y.
Ma L.-T.
Org. Lett.
2002,
4:
2389
The reversibility of the Cope rearrangement
might cause some racemization - the avoiding of such a
process was recommended. Alternatively a Prins cyclization could
be discussed as the basic reaction mechanism. Cope rearrangements
were found to be much faster than the Prins reaction. For the role
of oxonia Cope rearrangements in Prins cyclizations see:
81a
Rychnovsky SD.
Marumoto S.
Jaber JJ.
Org. Lett.
2001,
3:
3815
81b
Marumoto S.
Jaber JJ.
Vitale JP.
Rychnovsky SD.
Org.
Lett.
2002,
4:
3919
82a
Allin SM.
Baird RD.
Lins RJ.
Tetrahedron Lett.
2002,
43:
4195
82b
Allin SM.
Button MAC.
Baird RD.
Synlett
1998,
1117
82c
Allin SM.
Button MAC.
Tetrahedron
Lett.
1998,
39:
3345-3348
82d For preliminary publications
see: Allin SM.
Button MAC.
Shuttleworth SJ.
Synlett
1997,
725
83
n -BuLi
was found to be the base of choice to induce the anionic amino Cope
rearrangements. Experiments using alternative strong bases such
as LDA and KHMDS failed.
84a
Young Yoo H.
Houk KN.
Lee JK.
Scialdone MA.
Meyers AI.
J.
Am. Chem. Soc.
1998,
120:
205
84b
Dobson HK.
LeBlanc R.
Perrier H.
Stephenson C.
Welch TR.
Macdonald D.
Tetrahedron
Lett.
1999,
40:
3119
84c
Allin SM.
Button MAC.
Tetrahedron
Lett.
1999,
40:
3801
85
Tomooka K.
Nagasawa A.
Wei S.-Y.
Nakai T.
Tetrahedron Lett.
1996,
37:
8899
86 In contrast to the Oppolzer sultams
the corresponding Evans auxiliary gave only moderate chiral induction
of about 50% de building-up the new stereogenic center.
87
Tomooka K.
Nagasawa A.
Wei S.-Y.
Nakai T.
Tetrahedron Lett.
1996,
37:
8995
88a
Schneider C.
Rehfeuter M.
Tetrahedron
Lett.
1998,
39:
9
88b
Black WC.
Giroux A.
Greidanus G.
Tetrahedron Lett.
1996,
37:
4471
89
Paquette LA.
Tae J.
J. Org. Chem.
1998,
63:
2022
90
Davies HML.
Ahmed G.
Churchill MR.
J. Am. Chem. Soc.
1996,
118:
10774
For potential catalysts see:
91a
Helmchen G.
Pfaltz A.
Acc. Chem. Res.
2000,
33:
336
91b
Fache F.
Schulz E.
Tommasino ML.
Lemaire M.
Chem. Rev.
2000,
100:
2159
92a
Davies HWL.
Hodges ML.
J. Org. Chem.
2002,
65:
5683
92b
Davies HML.
Doan BD.
J.
Org. Chem.
1999,
64:
8501
92c
Davies HML.
Stafford DG.
Doan BD.
Houser JH.
J.
Am. Chem. Soc.
1998,
120:
3326
92d
Davies HML.
Doan BD.
Tetrahedron
Lett.
1996,
37:
3967
92e For a racemic series synthesizing azabicyclo[3,2,2]nonanes
see: Davies HML.
Hodges LM.
Thornley CT.
Tetrahedron
Lett.
1998,
39:
2707
92f Syntheses of tremulenolides: Davies HML.
Doan BD.
J. Org. Chem.
1998,
63:
657
93 For a mechanistic discussion concerning
the stereochemical outcome of the asymmetric catalyzed cyclopropanation
see the original references.
94
Claisen L.
Ber.
Dtsch. Chem. Ges.
1912,
45:
1423
95a
Cope AC.
Hardy EM.
J.
Am. Chem. Soc.
1940,
62:
441
95b
Cope AC.
Hoyle KE.
Heyl D.
J. Am. Chem. Soc.
1941,
63:
1843
95c
Cope AC.
Hofmann CM.
Hardy EM.
J. Am. Chem. Soc.
1941,
63:
1852
95d
Cope AC.
Field L.
J. Am. Chem.
Soc.
1949,
71:
1589
95e
Whyte DE.
Cope AC.
J.
Am. Chem. Soc.
1943,
65:
1999
96a
Carroll MF.
J. Chem. Soc.
1940,
704
96b
Carroll MF.
J. Chem. Soc.
1940,
1266
96c
Carroll MF.
J. Chem. Soc.
1941,
507
96d
Wick AE.
Felix D.
Steen K.
Eschenmoser A.
Helv. Chim. Acta
1964,
47:
2425
96e
Wick AE.
Felix D.
Gschwend-Steen K.
Eschenmoser A.
Helv.
Chim. Acta
1969,
52:
1030
96f
Johnson WS.
Werthemann L.
Bartlett WR.
Brocksom TJ.
Li TT.
Faulkner DJ.
Peterson MR.
J. Am. Chem. Soc.
1970,
92:
741
96g
Ireland RE.
Mueller RH.
J.
Am. Chem. Soc.
1972,
94:
5897
96h
Ireland RE.
Willard AK.
Tetrahedron
Lett.
1975,
16:
3975
96i
Ireland RE.
Mueller RH.
Willard AK.
J. Am. Chem. Soc.
1976,
98:
2868
96j
Baldwin JE.
Walker JA.
J.
Chem. Soc., Chem. Commun.
1973,
117
96k
Greuter H.
Lang RW.
Romann AJ.
Tetrahedron
Lett.
1988,
29:
3291
96l
Malherbe R.
Bellus D.
Helv. Chim. Acta
1978,
61:
3096
96m
Denmark SE.
Harmata MA.
J.
Am. Chem. Soc.
1982,
104:
4972
96n
Denmark SE.
Harmata MA.
J. Org.
Chem.
1983,
48:
3369
96o
Denmark SE.
Harmata MA.
Tetrahedron
Lett.
1984,
25:
1543
96p
Bergmann E.
Corte H.
J. Chem. Soc.
1935,
1363
96q
Lauer WM.
Kilburn EI.
J.
Am. Chem. Soc.
1937,
59:
2586
96r
Hurd CD.
Pollack MA.
J.
Am. Chem. Soc.
1938,
60:
1905
96s
Hurd CD.
Pollack MA.
J.
Org. Chem.
1939,
4:
550
96t
Arnold RT.
Searles S.
J.
Am. Chem. Soc.
1949,
71:
1150
96u
Arnold RT.
Parham WE.
Dodson RM.
J. Am. Chem. Soc.
1949,
71:
2439
96v
Burgstrahler AW.
Nordin IC.
J.
Am. Chem. Soc.
1961,
83:
198
96w
Marbet R.
Saucy G.
Helv. Chim. Acta
1967,
50:
2091
97a
Fehr C.
Galindo JA.
Angew.
Chem. Int. Ed.
2000,
39:
569 ; Angew. Chem.
2000 , 112 , 581
97b
Hong JH.
Gao M.-Y.
Choi Y.
Cheng Y.-C.
Schinazi RF.
Chu CK.
Carbohydr. Res.
2000,
328:
37
97c
Agami C.
Couty F.
Evano G.
Eur.
J. Org. Chem.
2002,
29
97d
Görth FC.
Umland A.
Brückner R.
Eur. J. Org. Chem.
1998,
1055
97e
Brenna E.
Fuganti C.
Grasselli P.
Serra S.
Eur. J. Org. Chem.
2001,
1349
97f
Trost BM.
Lee CB.
J.
Am. Chem. Soc.
2001,
123:
3687
97g
Corey EJ.
Guzman-Perez A.
Lazerwith SE.
J. Am. Chem. Soc.
1997,
119:
11769
97h
Wood JL.
Moniz GA.
Pflum DA.
Stoltz BM.
Holubec AA.
Dietrich HJ.
J. Am. Chem. Soc.
1999,
121:
1748
97i
He F.
Bo Y.
Altom JD.
Corey EJ.
J. Am. Chem. Soc.
1999,
121:
6771
97j
Hodgson DM.
Gibbs AR.
Drew MGD.
J. Chem. Soc., Perkin Trans.
1
1999,
3579
97k
Morimoto Y.
Takaishi M.
Kinoshita T.
Sakaguchi K.
Shibata K.
J.
Chem. Soc., Chem. Commun.
2002,
42
97l
Goujon J.-Y.
Duval A.
Kirschleger B.
J. Chem.
Soc., Perkin Trans. 1
2002,
496
97m
Roulland E.
Monneret C.
Florent J.-C.
J.
Org. Chem.
2002,
67:
4399
97n
Angle SR.
Henry RM.
J.
Org. Chem.
1998,
63:
7490
97o
Burke SD.
Sametz GM.
Org.
Lett.
1999,
1:
71
97p
Mapp AK.
Heathcock CH.
J.
Org. Chem.
1999,
64:
23
97q
Hodgson DM.
Gibbs AR.
Synlett
1997,
657
97r
Harrison JR.
Holmes AB.
Collins I.
Synlett
1999,
972
97s
Schaus JV.
Jain N.
Panek JS.
Tetrahedron
2000,
56:
10263
97t
Chandrasekhar S.
Venkat Reddy M.
Tetrahedron
2000,
56:
6339
97u
Brenna E.
Caraccia N.
Fuganti F.
Fuganti D.
Grasselli P.
Tetrahedron: Asymmetry
1997,
8:
3801
97v
Amat M.
Dolors Coil M.
Passarella D.
Bosch J.
Tetrahedron: Asymmetry
1997,
8:
2775
97w
Konno T.
Kitazume T.
Tetrahedron: Asymmetry
1997,
8:
223
97x
Guz NR.
Lorenz P.
Stermitz FR.
Tetrahedron Lett.
2001,
42:
6491
97y
Zhou B.
Edmondson S.
Padron J.
Danishefsky SJ.
Tetrahedron Lett.
2000,
41:
2039
97z
Ceccarelli S.
Piarulli U.
Gennari C.
Tetrahedron
Lett.
1999,
40:
153
98a
Kazmaier U.
Schneider C.
Tetrahedron
Lett.
1998,
39:
817
98b
Rutherford AP.
Hartley RC.
Tetrahedron
Lett.
2000,
41:
737
98c
Paquette LA.
Gao Z.
Ni Z.
Smith GF.
Tetrahedron Lett.
1997,
38:
1271
98d
Paquette LA.
Backhaus D.
Braun R.
Underiner TL.
Fuchs K.
J. Am. Chem. Soc.
1997,
119:
9662
98e
Martnez AG.
Vilar ET.
Fraile AG.
Moya Cerero S.
Maroto BL.
Tetrahedron: Asymmetry
2002,
13:
17
98f
Bonjoch J.
Sole D.
Chem. Rev.
2000,
100:
3455
98g
Koch G.
Janser P.
Kottirsch G.
Romero-Giron E.
Tetrahedron Lett.
2002,
43:
4837
98h
Chen YK.
Lurain AE.
Walsh PJ.
J. Am. Chem. Soc.
2002,
124:
12225
98i
Hatcher MA.
Posner GH.
Tetrahedron
Lett.
2002,
43:
5009
98j
Srikrishna A.
Anebouselvy K.
Tetrahedron Lett.
2002,
3:
2769