Abstract
The [3+2] cycloaddition of 2-azaallyl
anions with alkenes represents an attractive strategy
for the synthesis of substituted pyrrolidines. Although cycloadditions
of 2-azaallyl anions stabilized by aryl and ester groups have been
known for more than three decades, only recently have versions bearing
simply hydrogen or alkyl groups been discovered. These nonstabilized
2-azaallyl anions are generated by the low temperature transmetalation
of (2-azaallyl)stannanes with alkyllithiums. The resulting nonstabilized 2-azaallyllithiums
undergo cycloaddition with certain alkenes and alkynes in both intra-
and intermolecular modes to yield pyrrolidine or pyrroline cycloadducts.
The methodology has been extended to 2-azapentadienyllithiums, heteroatom-substituted
2-azaallyllithiums, and polymer-supported 2-azaallyllithiums. Asymmetric
2-azaallyl anion cycloadditions have also been investigated. Nonstabilized
azomethine ylides may also be generated from (2-azaallyl)stannanes
via an N -alkylation/destannylation
or N -protonation/destannylation
sequence. Together, the cycloaddition of nonstabilized 2-azaallyllithiums
and azomethine ylides with alkenes allows access to a broader range
of pyrrolidines, since these species have complimentary reactivity
profiles.
1 Introduction
2 Background: 2-Azaallyl Anions
2.1 Semistabilized 2-Azaallyl Anions
2.2 Stabilized 2-Azaallyl Anions
2.3 Nonstabilized 2-Azaallyl Anions
3 Methodology Development
3.1 Initial Attempts at Generating Nonstabilized 2-Azaallyl Anions
3.2 Tin-Lithium Exchange on (2-Azaallyl)stannanes
4 Cycloaddition of Simple Nonstabilized 2-Azaallyllithiums
4.1 Preparation of (2-Azaallyl)stannanes
4.2 Anionophiles and Quenches
4.3 Mechanism and Stereoselectivity
5 Variations on a Theme: Related Cycloadditions
5.1 Cycloadditions on Solid Support
5.2 2-Azapentadienyllithiums
5.3 Heteroatom-Substituted 2-Azaallyllithiums
5.4 Enantioselective Cycloadditions
5.5 Higher-Order Cycloadditions
6 Other Uses of (2-Azaallyl)stannanes
6.1 Azomethine Ylide Generation and Cycloaddition
6.2 Nucleophilic Additions to (2-Azaallyl)stannanes
7 Synthesis of Alkaloids
7.1 Intramolecular Cycloadditions
7.1.1 Amabiline and Augustamine
7.1.2 Mesembranes
7.1.3 Coccinine
7.1.4 Crinine and 6-Epicrinine
7.1.5 Approach to 6a-Epipretazettine
7.2 Intermolecular Cycloadditions
7.2.1 Lepadiformine Isomers
7.2.2 Lapidilectine B
7.2.3 Indolizidine 239CD
8 Commentary
Key words
organolithium - anionic cycloaddition - heterocycles - alkaloid synthesis - tin-lithium exchange
References
1 Current address: Berry & Associates,
Inc., 2642 Bishop Circle East, Dexter, Michigan, 48130, USA
2
Ingold CK.
Shoppee CW.
J. Chem. Soc.
1929,
1199
3
Hauser CR.
Flur IC.
Kantor SW.
J.
Am. Chem. Soc.
1949,
71:
294
4a
Kauffmann T.
Angew. Chem., Int. Ed. Engl.
1974,
13:
627
4b
Kauffmann T.
Berg H.
Köppelmann E.
Angew. Chem.,
Int. Ed. Engl.
1970,
9:
380
5
Tsuge O.
Kanemasa S.
Hatada A.
Matsuda K.
Bull. Chem. Soc. Jpn.
1986,
59:
2537
6
Tsuge O.
Kanemasa S.
Hatada A.
Matsuda K.
Chem. Lett.
1984,
801
7
Achiwa K.
Imai N.
Motoyama T.
Sekiya M.
Chem. Lett.
1984,
2041
8
Imai N.
Achiwa K.
Chem. Pharm. Bull.
1987,
35:
2646
9
Tsuge O.
Kanemasa S.
Yamada T.
Matsuda K.
J. Org. Chem.
1987,
52:
2523
10
Dehnel A.
Lavielle G.
Tetrahedron Lett.
1980,
21:
1315
11
Houwing HA.
van Leusen AM.
J. Heterocycl.
Chem.
1981,
18:
1127
12
Fouchet B.
Joucla M.
Hamelin J.
Tetrahedron
Lett.
1981,
22:
3397
13
Grigg R.
Sridharan V. In
Advances
in Cycloaddition
Vol. 3:
Curran DP.
JAI Press;
Greenwich
CT:
1993.
p.161-204
14
Kanemasa S.
Tsuge O. In
Advances
in Cycloaddition
Vol. 3:
Curran DP.
JAI Press;
Greenwich
CT:
1993.
p.99-159
15
Kanemasa S. In
Synthetic Applications of 1,3-Dipolar Cycloaddition
Chemistry Toward Heterocycles and Natural Products
Padwa A.
Pearson WH.
John Wiley & Sons;
New
York:
2002.
p.755-815
16
Harwood LM.
Vickers RJ. In
Synthetic
Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and
Natural Products
Padwa A.
Pearson WH.
John
Wiley & Sons;
New York:
2002.
p.169-252
17
Grigg R.
Kemp J.
Tetrahedron Lett.
1978,
2823
18
Kanemasa S.
Yamamoto H.
Wada E.
Sakurai T.
Urushido K.
Bull.
Chem. Soc. Jpn.
1990,
63:
2857
19
Terao Y.
Aono M.
Achiwa K.
Heterocycles
1988,
27:
981
20
Tsuge O.
Kanemasa S.
Matsuda K.
Chem.
Lett.
1984,
1827
21
Pearson WH.
Walters MA.
Oswell KD.
J. Am. Chem. Soc.
1986,
108:
2769
22 A single report of the use of an
unactivated alkene in a cycloaddition with a 2-azaallyl anion preceded
this work wherein Kauffmann’s 1,3-diphenyl-2-azaallyllithium
was used to capture ethylene that was generated by the base-promoted
decomposition of THF, see: Kamata K.
Terashima M.
Heterocycles
1980,
14:
205
23
Pearson WH.
Walters MA.
Harter WG. In Electronic Conference on Trends in Heterocyclic
Chemistry
Royal Society of Chemistry;
Cambridge
UK:
1996. Paper No. 60; http://www.ch.ic.ac.uk/ectoc/echet96/papers/060/index.htm
24 Pearson, W. H.; Walters, M. A.; Rosen,
M. K.; Harter, W. G. Arkivoc 2002 , in press.
25
Kauffmann T.
Habersaat K.
Köppelmann E.
Angew. Chem.,
Int. Ed. Engl.
1972,
11:
291
26
Wiberg KB.
Breneman CM.
LePage TJ.
J. Am. Chem. Soc.
1990,
112:
61
27
Pearson WH.
Szura DP.
Harter WG.
Tetrahedron Lett.
1988,
29:
761
28
Pearson WH.
Szura DP.
Postich MJ.
J. Am. Chem. Soc.
1992,
114:
1329
29
Pearson WH.
Postich MJ.
J. Org. Chem.
1992,
57:
6354
30
Chong JM.
Park SB.
J. Org. Chem.
1992,
57:
2220
31
Pearson WH.
Ren Y.
J. Org. Chem.
1999,
64:
688
32
Kauffmann T.
Ahlers H.
Hamsen A.
Schulz H.
Tilhard H.-J.
Vahrenhorst A.
Angew. Chem., Int. Ed.
Engl.
1977,
16:
119
33
Pearson WH.
Mi Y.
Tetrahedron Lett.
1997,
38:
5441
34
Pearson WH.
Jacobs VA.
Tetrahedron Lett.
1994,
35:
7001
35
Pearson WH.
Stevens EP.
Tetrahedron Lett.
1994,
35:
2641
36
Pearson WH.
Stevens EP.
J. Org. Chem.
1998,
63:
9812
37
Pearson WH.
Stevens EP.
Aponick A.
Tetrahedron Lett.
2001,
42:
7361
38
Pearson WH.
Clark RB.
Tetrahedron Lett.
1997,
38:
7669
39
Pearson WH.
Mi Y.
Lee IY.
Stoy P.
J. Am. Chem. Soc.
2001,
123:
6724
40
Clark RB.
Pearson WH.
Org. Lett.
1999,
1:
349
Carbolithiation reviews:
41a
Knochel P. In Comprehensive Organic
Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon;
New
York:
1991.
p.865-911
41b
Bailey WF.
Ovaska TV. In Advances
in Detailed Reaction Mechanisms
Vol. 3:
Coxon JM.
JAI Press;
Greenwich
CT:
1994.
p.251-273
41c
Marek I.
J.
Chem. Soc., Perkin Trans. 1
1999,
535
For lithium-ene reactions of allylic
organolithiums with alkenes see the following references and the
earlier work cited therein:
42a
Dieters A.
Hoppe D.
Angew. Chem. Int. Ed.
1999,
38:
546
42b
Cheng D.
Zhu S.
Liu X.
Norton SH.
Cohen T.
J.
Am. Chem. Soc.
1999,
121:
10241
42c
Cheng D.
Knox KR.
Cohen T.
J.
Am. Chem. Soc.
2000,
122:
412
43
Sauers RR.
Tetrahedron
Lett.
1996,
37:
7679
44
Neumann F.
Lambert C.
Schleyer PVR.
J. Am. Chem. Soc.
1998,
120:
3357
45
Kauffmann T.
Köppelmann E.
Angew. Chem., Int.
Ed. Engl.
1972,
11:
290
46 For a structure proof of one of
Kauffmann’s cycloaddition products see: Ivanov PM.
Mikhova BP.
Spassov SL.
J. Mol. Struct.
1996,
377:
19
47
Pearson WH.
Barta NS.
Kampf JW.
Tetrahedron
Lett.
1997,
38:
3369
48
Pearson WH.
Mans DM.
Kampf JW.
Org.
Lett.
2002,
4:
3099
49 For a brief study on the cycloaddition
of Kauffmann’s 1,3-diphenyl-2-azaallyllithium with cycloheptatriene
see: Bower DJ.
Howden MEH.
J. Chem. Soc., Perkin Trans. 1
1980,
672
50a
Vedejs E.
West FG.
Chem.
Rev.
1986,
86:
941
50b
Vedejs E. In
Advances in Cycloaddition
Vol.
1:
Curran DP.
JAI
Press;
Greenwich CT:
1988.
p.33-51
50c
Tominaga Y.
Hojo M.
Hosomi A.
Yuki
Gosei Kagaku Kyokaishi
1992,
50:
48
Other routes to nonstabilized azomethine
ylides include decarboxylative methods and the deprotonation of
tertiary amine N -oxides. For leading
references see:
51a
Tsuge O.
Kanemasa S.
Ohe M.
Takenaka S.
Bull. Chem. Soc. Jpn.
1987,
60:
4079
51b
Ardill H.
Grigg R.
Sridharan V.
Surendrakumar S.
Tetrahedron
1988,
44:
4953
51c
Chastanet J.
Roussi G.
J. Org. Chem.
1988,
53:
3808
52a
Achiwa K.
Imai N.
Inaoka T.
Sekiya M.
Chem. Pharm.
Bull.
1984,
32:
2878
52b
Imai N.
Achiwa K.
Chem. Pharm. Bull.
1987,
35:
593
53
Pearson WH.
Clark RB.
Tetrahedron Lett.
1999,
40:
4467
54
Pearson WH.
Aponick A.
Organic Lett.
2001,
3:
1327
55
Pearson WH.
Lovering FE.
J. Am. Chem. Soc.
1995,
117:
12336
56
Pearson WH.
Lovering FE.
J. Org. Chem.
1998,
63:
3607
57
Pearson WH.
Lian BW.
Angew. Chem., Int. Ed.
Engl.
1998,
37:
1724
58
Pearson WH.
Lovering FE.
Tetrahedron Lett.
1994,
35:
9173
59
Pearson WH.
Postich MJ.
J. Org. Chem.
1994,
59:
5662
60
Martin SF.
Davidsen SK.
Puckette TA.
J. Org. Chem.
1987,
52:
1962
61
Biard JF.
Guyot S.
Roussakis C.
Verbist JF.
Vercauteren J.
Weber JF.
Boukef K.
Tetrahedron
Lett.
1994,
35:
2691
62
Werner KM.
de los Santos JM.
Weinreb SM.
Shang M.
J. Org. Chem.
1999,
64:
686
63
Werner KM.
de los Santos JM.
Weinreb SM.
Shang M.
J. Org. Chem.
1999,
64:
4865
64
Sun P.
Sun C.
Weinreb SM.
Org.
Lett.
2001,
3:
3507
65
Sun P.
Sun C.
Weinreb SM.
J.
Org. Chem.
2002,
67:
4337
66
Abe H.
Aoyagi S.
Kibayashi C.
Tetrahedron
Lett.
2000,
41:
1205
67
Abe H.
Aoyagi S.
Kibayashi C.
J. Am.
Chem. Soc.
2000,
122:
4583
68 Lepadiformine has also been synthesized
by Greshock and Funk: Greshock TJ.
Funk RL.
Org. Lett.
2001,
3:
3511
69
Marshall JA.
Garofalo AW.
J. Org. Chem.
1993,
58:
3675
70
Ardakani MA.
Smalley RK.
Tetrahedron Lett.
1979,
4769
71
Azadi-Ardakani M.
Alkhader MA.
Lippiatt JH.
Patel DI.
Smalley RK.
Higson S.
J.
Chem. Soc., Perkin Trans. 1
1986,
1107