References
1
The
Chemistry of Dienes and Polyenes
Rappoport Z.
John Wiley & Sons;
New
York:
1997.
2a
Mitchell TN.
Amamria A.
J.
Orgmet. Chem.
1983,
253:
47
2b
Mitchell TN.
Reimann W.
J. Orgmet.
Chem.
1985,
281:
163
2c
Mitchell TN.
Reimann W.
Organometallics
1986,
5:
1991
2d
Mitchell TN.
Reimann W.
J. Orgmet.
Chem.
1987,
322:
141 Mitchell
T. N., Schütze M., Giebelmann F.; Synlett; 1997, 183
2e
Quayle P.
Wang J.
Xu J.
Urch CJ.
Tetrahedron Lett.
1998,
39:
479
2f
Imanieh H.
MacLeod D.
Zao Y.
Davies GM.
Tetrahedron Lett.
1992,
33:
405
2g
Lautens M.
Huboux AH.
Tetrahedron Lett.
1990,
31:
3105
2h
Lautens M.
Delanghe PHM.
Goh JB.
Zhang CH.
J.
Org. Chem.
1992,
57:
3270
2i
Lautens M.
Zhang CH.
Goh JB.
Crudden CM.
Johnson MJA.
J. Org. Chem.
1994,
59:
6208
2j
Lautens M.
Delanghe PHM.
Goh JB.
Zhang CH.
J.
Org. Chem.
1995,
60:
4213
2k
Lautens M.
Ben RN.
Delanghe PHM.
Tetrahedron
1996,
52:
7221
2l
Rossi R.
Carpita A.
Messeri T.
Synth. Commun.
1992,
22:
603
2m
Tweddell J.
Hoic DA.
Fu GC.
J.
Org. Chem.
1997,
62:
8286
For allylic and aliphatic 1,1-bimetallated
species see also:
3a
Leusink AJ.
Noltes JG.
J.
Orgmet. Chem.
1969,
16:
91
3b
Isono N.
Mori M.
Tetrahedron Lett.
1997,
36:
9345
3c
Isono N.
Mori M.
J. Org. Chem.
1996,
61:
7867
3d
Wahamatsu H.
Isono N.
Mori M.
J.
Org. Chem.
1997,
62:
8917
3e
Madec D.
Férézou J.-P.
Tetrahedron
Lett.
1997,
38:
6657
3f
Grimaud L.
Férézou J.-P.
Prunet J.
Lallemand J.-Y.
Tetrahedron
1997,
53:
9253
3g
Dabdoub MJ.
Dabdoub VB.
Baroni ACM.
J. Am. Chem. Soc.
2001,
123:
9694
3h For a review see: Marek I.
Normant J.-F.
Chem.
Rev.
1996,
96:
3241
4a
Corey EJ.
Fuchs PL.
Tetrahedron
Lett.
1972,
3769
4b
Ramirez F.
Desai NB.
McKelvie N.
J.
Am. Chem. Soc.
1962,
84:
1745
4c
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1996,
61:
5716
4d
Uenishi J.
Kawahama R.
Yonemitsu O.
Tsuji J.
J. Org. Chem.
1998,
63:
8965
4e
Uenishi J.
Kawahama R.
Shiga Y.
Yonemitsu O.
Tsuji J.
Tetrahedron
Lett.
1996,
37:
6759
4f
Shen W.
Wang L.
J. Org. Chem.
1999,
64:
8873
4g
Grandjean D.
Pale P.
Tetrahedron Lett.
1993,
34:
1155
4h
Harada T.
Katsuhira T.
Oku A.
J.
Org. Chem.
1992,
57:
5805
4i
Braun M.
Rahematpura J.
Bühne C.
Paulitz TC.
Synlett
2000,
1070
4j For α-heteroatom-substituted
1-alkenyllithium reagents see: Braun M.
Angew. Chem.
Int. Ed.
1998,
37:
430
5a
Kocienski P.
Barber C.
Pure
Appl. Chem.
1990,
62:
1933
5b
Takle A.
Kocienski P.
Tetrahedron
1990,
46:
4503
5c
Kocienski P.
Dixon NJ.
Synlett
1989,
52
5d
Pimm A.
Kocienski P.
Street SDA.
Synlett
1992,
886
5e For a recent review see: Boche G.
Lohrenz JCW.
Chem. Rev.
2001,
101:
697
6a
Fargeas V.
Le Ménez P.
Berque I.
Ardisson J.
Pancrazi A.
Tetrahedron
1996,
52:
6613
6b Le Ménez P., Fargeas
V., Poisson J., Ardisson J., Lallemand J.-Y., Pancrazi A.; Terahedron Lett.; 1994, 35: 7767
6c
Le Ménez P.
Firmo N.
Fargeas V.
Ardisson J.
Pancrazi A.
Synlett
1994,
995
6d
Le Ménez P.
Berque I.
Fargeas V.
Ardisson J.
Pancrazi A.
Synlett
1994,
998
6e
Le Ménez P.
Berque I.
Fargeas V.
Ardisson J.
Lallemand J.-Y.
Pancrazi A.
J. Org.
Chem.
1995,
60:
3592
7 Le Ménez, P.; Brion, J.-D.;
Lensen, N.; Chelain, E.; Pancrazi, A.; Ardisson, J. results to be published.
8
Chen S.-ML.
Schaub RE.
Grudzinskas CV.
J. Org. Chem.
1978,
43:
3450
9
Quayle P.
Wang J.
Xu J.
Urch CJ.
Tetrahedron Lett.
1998,
39:
481
10 Preparation of Z
-7: A solution of the 5-lithio-2,3-dihydro-furan
derivative 1 (2.5 mmol)
[9]
in THF (4 mL) was added, via cannula,
to the solution of the bis-(trimethylsilyl)
dilithio-cyanocuprate
[15]
at -30 °C
(2.75 mmol, 1.1 equiv) in THF-Et2O (6 mL/12
mL). The mixture was stirred at -5 °C to 0 °C for
1.5 h. The mixture was then cooled at -40 °C and Bu3SnCl
(4 equiv) was added. The temperature was allowed to rise to 0 °C
over 1 h, stirring was maintained for 4 h, while the temperature
rose to 20 °C. The reaction mixture was poured into a solution
of saturated aqueous NH4Cl/concentrated ammonia
(4:1) at 0 °C and stirred for 30 min before extraction
with diethyl ether. After purification by chromatography on silica
gel compound Z
-7 was
obtained in 86% yield. IR (Neat): 3298, 2954, 2923, 2871,
1571, 1463, 1244, 1180, 1046, 960, 871, 830, 743, 685, 620, 591
cm-1. 1H NMR (200
MHz, CDCl3) δ 0.0 (s, 9 H), 0.88 (m, 15 H), 1.32
(m, 6 H + OH), 1.45 (m, 6 H), 2.45 (q, J = 6.5
Hz, 2 H), 3.69 (t, J = 6.5 Hz,
2 H), 6.72 (t, J = 6.5 Hz, 1
H, J
H-
119
Sn = J
H-
117
Sn = 170.0
Hz). 13C NMR (50 MHz, CDCl3) δ -0.3
(3 CH3), 11.3 (3 CH2, J
C-
119
Sn = 318.0
Hz, J
C-
117
Sn = 304.0
Hz), 13.6 (3 CH3), 27.4 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 58.0
Hz), 29.2 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 19.0
Hz), 42.4 (CH2, J
C-
119
Sn = J
C-
117
Sn = 57.5
Hz), 62.1 (CH2), 147.6 (C), 150.7 (CH, J
C-
119
Sn = J C-
117
Sn = 20.0
Hz). MS (CI, CH4): for major 120Sn
isotope, m/z 377,
311, 308, 306, 304, 252, 250, 248, 102.
11 To a solution of the vinyltin
derivative Z
-7 in
CH2Cl2 (or CH3CN) at 0 °C
(or below) was slowly added a CH2Cl2 solution
of iodine (1.05 equiv) until persistence of an orange-red color
(1 h at 0 °C). The solution was then washed with an aqueous
KF and a saturated aqueous Na2SO3 solution
before evaporation of the solvent and chromato-graphy on silica
gel. Compound Z
-8 was
obtained in 91% yield. 1H NMR (200
MHz, CDCl3) δ 0.18 (s, 9 H), 2.45 (q,
J = 6.5 Hz, 2 H),
2.5 (s, 1 H), 3.72 (t, J = 6.5
Hz, 2 H), 6.57 (t, J = 6.5 Hz,
1 H). 13C NMR (50 MHz, CDCl3) δ 1.5
(3 CH3), 42.1 (CH2), 60.6 (CH2),
116.0 (C), 143.5 (CH). MS (CI, CH4): m/z 181,
143, 103, 91, 73. Anal. calcd for C7H15IOSi:
C, 31.12; H, 5.60; I, 46.97; O, 5.92; Si, 10.40; Found: C, 31.32;
H, 5.48.
12
Lautens M.
Huboux AH.
Tetrahedron Lett.
1990,
31:
3105
13 Preparation of Z
-9, E
-10 and E
-11 derivatives:
A solution of
the 5-lithio-2,3-dihydrofuran derivative 1 (2.5 mmol)
in THF (4 mL) was added, via cannula, to the solution of the bis-[(tributyl)stannyl] dilithiocyanocuprate
[9]
at -30 °C (2.75
mmol, 1.1 equiv) in THF-Et2O (6 mL/12
mL). The mixture was stirred at -5°C to 0 °C
for 1.5 h 30. The mixture was then cooled at -40 °C
and a THF solution (1-2 mL) of the quenching agent, NIS,
NBS or NCS (4.0 equiv), was added. The temperature was allowed to
rise to 0 °C for 1 h, stirring was maintained for 4 h,
with temperature going up to 20 °C. The reaction mixture
was poured into a solution of saturated aqueous NH4Cl/concentrated
ammonia (4:1) at 0 °C and stirred for 30 min before extraction
with diethyl ether. The Z
-9 compound was obtained in 75% yield.
IR (Neat): 3324, 2950, 2920, 2870, 2850, 1594, 1461, 1376, 1180,
1044, 907, 733, 690, 664, 597 cm-1. 1H
NMR (200 MHz, CDCl3) δ 0.85 (t, J = 8.0 Hz, 6 H), 0.96 (t, J = 8.0 Hz, 9 H), 1.30 (m, 6
H), 1.48 (m, 1 H, OH), 2.45 (q, J = 6.5
Hz, 2 H), 3.69 (t, J = 6.5 Hz,
2 H), 6.14 (t, J = 6.5 Hz, 1
H, J
H-
119
Sn = J
H-
117
Sn = 42.0
Hz). 13C NMR (50 MHz, CDCl3) δ 11.1 (3
CH2, J
C-
119
Sn = 348.0
Hz, J
C-
117
Sn = 332.0
Hz), 13.6 (3 CH3), 27.2 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 60.0
Hz), 28.6 (3 CH2, J
C-
119
Sn = J C-
117
Sn = 20.0
Hz), 42.6 (CH2, J
C-
119
Sn = J
C-
117
Sn = 32.0
Hz), 60.9 (CH2), 110.0 (C), 145.2 (CH, J
C-
119
Sn = J
C-
117
Sn = 20.0
Hz). MS (CI, CH4): for major 120Sn
isotope, m/z 377, 322, 307,
252. Anal. calcd for C16H33IOSn: C, 39.46;
H, 6.83; I, 26.06; O, 3.29; Sn 24.37; Found: C, 39.88; H, 7.09.
14 Selected NMR spectroscopic data
Z
-12: 1H
NMR (200 MHz, CDCl3) δ 2.22 (q, J = 6.5 Hz, 2 H), 3.63 (t, J = 6.5 Hz, 2 H), 6.51 (t, J = 6.5 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 40.4 (CH2), 55.5
(C), 59.9 (CH2), 143.5 (CH).
E
-13: 1H
NMR (200 MHz, CDCl3) δ 2.37 (q, J = 7.0 Hz, 2 H), 3.72 (t, J = 7.0 Hz, 2 H), 6.90 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 37.8 (CH2), 51.0
(C), 60.3 (CH2), 143.7 (CH).
14
: 1H NMR (200
MHz, CDCl3) δ 1.8 (s, 1 H), 2.44 (q, J = 6.5 Hz, 2 H), 3.76 (t, J = 6.5 Hz, 2 H), 6.48 (t, J = 6.5 Hz, 1 H). 13C
NMR (50 MHz, CDCl3) δ 36.2 (CH2),
60.3 (CH2), 90.5 (C), 135.1 (CH).
E
-15: 1H
NMR (200 MHz, CDCl3) δ 2.43 (q, J = 7.0 Hz, 2 H), 3.69 (t, J = 7.0 Hz, 2 H), 6.51 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 34.9 (CH2), 60.5
(CH2), 68.5 (C), 140.3 (CH).
Z
-16: 1H
NMR (200 MHz, CDCl3) δ 2.34 (q, J = 7.0 Hz, 2 H), 3.73 (t, J = 7.0 Hz, 2 H), 6.18 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 39.2 (CH2), 60.4
(CH2), 75.7 (C), 137.3 (CH).
(Me3Si)2CuCNLi2 was
prepared by reaction of 2 equivalents of MeLi with 2.2 equivalents
of (Me3Si)2 in THF/HMPA (5 mL:1 mL),
and 1 equivalent of CuCN at 0 °C. For preparation of Me3SiLi
see:
15a
Lipshutz BH.
Sharma S.
Reuter DC.
Tetrahedron Lett.
1990,
31:
7253
15b
Still WC.
J. Org. Chem.
1976,
41:
3063