Subscribe to RSS
DOI: 10.1055/s-2003-39296
Stereoselective Preparation of Homo- and Hetero-1,1-Dihalo-1-alkenes
Publication History
Publication Date:
20 May 2003 (online)
Abstract
Metallate rearrangements performed on 5-lithio-2,3-dihydrofuran 1 gave access to several homo- and hetero-1,1-bimetallated (or pseudo) alkenes 3 upon exposure to a cyanocuprate and quench with an electrophilic reagent Ε X. After metal/halogen exchange, several homo- or hetero-1,1-dihalo-1-alkenes were prepared stereospecifically and in good yields.
Key words
metallate rearrangement - Kocienski reaction - cuprate reagent - halogen exchange - 1,1-dihalo-1-alkene
- 1
The
Chemistry of Dienes and Polyenes
Rappoport Z. John Wiley & Sons; New York: 1997. -
2a
Mitchell TN.Amamria A. J. Orgmet. Chem. 1983, 253: 47 -
2b
Mitchell TN.Reimann W. J. Orgmet. Chem. 1985, 281: 163 -
2c
Mitchell TN.Reimann W. Organometallics 1986, 5: 1991 -
2d
Mitchell TN.Reimann W. J. Orgmet. Chem. 1987, 322: 141 Mitchell T. N., Schütze M., Giebelmann F.; Synlett; 1997, 183 -
2e
Quayle P.Wang J.Xu J.Urch CJ. Tetrahedron Lett. 1998, 39: 479 -
2f
Imanieh H.MacLeod D.Zao Y.Davies GM. Tetrahedron Lett. 1992, 33: 405 -
2g
Lautens M.Huboux AH. Tetrahedron Lett. 1990, 31: 3105 -
2h
Lautens M.Delanghe PHM.Goh JB.Zhang CH. J. Org. Chem. 1992, 57: 3270 -
2i
Lautens M.Zhang CH.Goh JB.Crudden CM.Johnson MJA. J. Org. Chem. 1994, 59: 6208 -
2j
Lautens M.Delanghe PHM.Goh JB.Zhang CH. J. Org. Chem. 1995, 60: 4213 -
2k
Lautens M.Ben RN.Delanghe PHM. Tetrahedron 1996, 52: 7221 -
2l
Rossi R.Carpita A.Messeri T. Synth. Commun. 1992, 22: 603 -
2m
Tweddell J.Hoic DA.Fu GC. J. Org. Chem. 1997, 62: 8286 - For allylic and aliphatic 1,1-bimetallated species see also:
-
3a
Leusink AJ.Noltes JG. J. Orgmet. Chem. 1969, 16: 91 -
3b
Isono N.Mori M. Tetrahedron Lett. 1997, 36: 9345 -
3c
Isono N.Mori M. J. Org. Chem. 1996, 61: 7867 -
3d
Wahamatsu H.Isono N.Mori M. J. Org. Chem. 1997, 62: 8917 -
3e
Madec D.Férézou J.-P. Tetrahedron Lett. 1997, 38: 6657 -
3f
Grimaud L.Férézou J.-P.Prunet J.Lallemand J.-Y. Tetrahedron 1997, 53: 9253 -
3g
Dabdoub MJ.Dabdoub VB.Baroni ACM. J. Am. Chem. Soc. 2001, 123: 9694 -
3h For a review see:
Marek I.Normant J.-F. Chem. Rev. 1996, 96: 3241 -
4a
Corey EJ.Fuchs PL. Tetrahedron Lett. 1972, 3769 -
4b
Ramirez F.Desai NB.McKelvie N. J. Am. Chem. Soc. 1962, 84: 1745 -
4c
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1996, 61: 5716 -
4d
Uenishi J.Kawahama R.Yonemitsu O.Tsuji J. J. Org. Chem. 1998, 63: 8965 -
4e
Uenishi J.Kawahama R.Shiga Y.Yonemitsu O.Tsuji J. Tetrahedron Lett. 1996, 37: 6759 -
4f
Shen W.Wang L. J. Org. Chem. 1999, 64: 8873 -
4g
Grandjean D.Pale P. Tetrahedron Lett. 1993, 34: 1155 -
4h
Harada T.Katsuhira T.Oku A. J. Org. Chem. 1992, 57: 5805 -
4i
Braun M.Rahematpura J.Bühne C.Paulitz TC. Synlett 2000, 1070 -
4j For α-heteroatom-substituted
1-alkenyllithium reagents see:
Braun M. Angew. Chem. Int. Ed. 1998, 37: 430 -
5a
Kocienski P.Barber C. Pure Appl. Chem. 1990, 62: 1933 -
5b
Takle A.Kocienski P. Tetrahedron 1990, 46: 4503 -
5c
Kocienski P.Dixon NJ. Synlett 1989, 52 -
5d
Pimm A.Kocienski P.Street SDA. Synlett 1992, 886 -
5e For a recent review see:
Boche G.Lohrenz JCW. Chem. Rev. 2001, 101: 697 -
6a
Fargeas V.Le Ménez P.Berque I.Ardisson J.Pancrazi A. Tetrahedron 1996, 52: 6613 - 6b Le Ménez P., Fargeas V., Poisson J., Ardisson J., Lallemand J.-Y., Pancrazi A.; Terahedron Lett.; 1994, 35: 7767
-
6c
Le Ménez P.Firmo N.Fargeas V.Ardisson J.Pancrazi A. Synlett 1994, 995 -
6d
Le Ménez P.Berque I.Fargeas V.Ardisson J.Pancrazi A. Synlett 1994, 998 -
6e
Le Ménez P.Berque I.Fargeas V.Ardisson J.Lallemand J.-Y.Pancrazi A. J. Org. Chem. 1995, 60: 3592 - 8
Chen S.-ML.Schaub RE.Grudzinskas CV. J. Org. Chem. 1978, 43: 3450 - 9
Quayle P.Wang J.Xu J.Urch CJ. Tetrahedron Lett. 1998, 39: 481 - 11 To a solution of the vinyltin
derivative Z
-7 in
CH2Cl2 (or CH3CN) at 0 °C
(or below) was slowly added a CH2Cl2 solution
of iodine (1.05 equiv) until persistence of an orange-red color
(1 h at 0 °C). The solution was then washed with an aqueous
KF and a saturated aqueous Na2SO3 solution
before evaporation of the solvent and chromato-graphy on silica
gel. Compound Z
-8 was
obtained in 91% yield. 1H NMR (200
MHz, CDCl3) δ 0.18 (s, 9 H), 2.45 (q,
J = 6.5 Hz, 2 H),
2.5 (s, 1 H), 3.72 (t, J = 6.5
Hz, 2 H), 6.57 (t, J = 6.5 Hz,
1 H). 13C NMR (50 MHz, CDCl3) δ 1.5
(3 CH3), 42.1 (CH2), 60.6 (CH2),
116.0 (C), 143.5 (CH). MS (CI, CH4): m/z 181,
143, 103, 91, 73. Anal. calcd for C7H15IOSi:
C, 31.12; H, 5.60; I, 46.97; O, 5.92; Si, 10.40; Found: C, 31.32;
H, 5.48.
- 12
Lautens M.Huboux AH. Tetrahedron Lett. 1990, 31: 3105 - (Me3Si)2CuCNLi2 was prepared by reaction of 2 equivalents of MeLi with 2.2 equivalents of (Me3Si)2 in THF/HMPA (5 mL:1 mL), and 1 equivalent of CuCN at 0 °C. For preparation of Me3SiLi see:
-
15a
Lipshutz BH.Sharma S.Reuter DC. Tetrahedron Lett. 1990, 31: 7253 -
15b
Still WC. J. Org. Chem. 1976, 41: 3063
References
Le Ménez, P.; Brion, J.-D.; Lensen, N.; Chelain, E.; Pancrazi, A.; Ardisson, J. results to be published.
10Preparation of Z -7: A solution of the 5-lithio-2,3-dihydro-furan derivative 1 (2.5 mmol) [9] in THF (4 mL) was added, via cannula, to the solution of the bis-(trimethylsilyl) dilithio-cyanocuprate [15] at -30 °C (2.75 mmol, 1.1 equiv) in THF-Et2O (6 mL/12 mL). The mixture was stirred at -5 °C to 0 °C for 1.5 h. The mixture was then cooled at -40 °C and Bu3SnCl (4 equiv) was added. The temperature was allowed to rise to 0 °C over 1 h, stirring was maintained for 4 h, while the temperature rose to 20 °C. The reaction mixture was poured into a solution of saturated aqueous NH4Cl/concentrated ammonia (4:1) at 0 °C and stirred for 30 min before extraction with diethyl ether. After purification by chromatography on silica gel compound Z -7 was obtained in 86% yield. IR (Neat): 3298, 2954, 2923, 2871, 1571, 1463, 1244, 1180, 1046, 960, 871, 830, 743, 685, 620, 591 cm-1. 1H NMR (200 MHz, CDCl3) δ 0.0 (s, 9 H), 0.88 (m, 15 H), 1.32 (m, 6 H + OH), 1.45 (m, 6 H), 2.45 (q, J = 6.5 Hz, 2 H), 3.69 (t, J = 6.5 Hz, 2 H), 6.72 (t, J = 6.5 Hz, 1 H, J H- 119 Sn = J H- 117 Sn = 170.0 Hz). 13C NMR (50 MHz, CDCl3) δ -0.3 (3 CH3), 11.3 (3 CH2, J C- 119 Sn = 318.0 Hz, J C- 117 Sn = 304.0 Hz), 13.6 (3 CH3), 27.4 (3 CH2, J C- 119 Sn = J C- 117 Sn = 58.0 Hz), 29.2 (3 CH2, J C- 119 Sn = J C- 117 Sn = 19.0 Hz), 42.4 (CH2, J C- 119 Sn = J C- 117 Sn = 57.5 Hz), 62.1 (CH2), 147.6 (C), 150.7 (CH, J C- 119 Sn = J C- 117 Sn = 20.0 Hz). MS (CI, CH4): for major 120Sn isotope, m/z 377, 311, 308, 306, 304, 252, 250, 248, 102.
13Preparation of Z
-9, E
-10 and E
-11 derivatives:
A solution of
the 5-lithio-2,3-dihydrofuran derivative 1 (2.5 mmol)
in THF (4 mL) was added, via cannula, to the solution of the bis-[(tributyl)stannyl] dilithiocyanocuprate
[9]
at -30 °C (2.75
mmol, 1.1 equiv) in THF-Et2O (6 mL/12
mL). The mixture was stirred at -5°C to 0 °C
for 1.5 h 30. The mixture was then cooled at -40 °C
and a THF solution (1-2 mL) of the quenching agent, NIS,
NBS or NCS (4.0 equiv), was added. The temperature was allowed to
rise to 0 °C for 1 h, stirring was maintained for 4 h,
with temperature going up to 20 °C. The reaction mixture
was poured into a solution of saturated aqueous NH4Cl/concentrated
ammonia (4:1) at 0 °C and stirred for 30 min before extraction
with diethyl ether. The Z
-9 compound was obtained in 75% yield.
IR (Neat): 3324, 2950, 2920, 2870, 2850, 1594, 1461, 1376, 1180,
1044, 907, 733, 690, 664, 597 cm-1. 1H
NMR (200 MHz, CDCl3) δ 0.85 (t, J = 8.0 Hz, 6 H), 0.96 (t, J = 8.0 Hz, 9 H), 1.30 (m, 6
H), 1.48 (m, 1 H, OH), 2.45 (q, J = 6.5
Hz, 2 H), 3.69 (t, J = 6.5 Hz,
2 H), 6.14 (t, J = 6.5 Hz, 1
H, J
H-
119
Sn = J
H-
117
Sn = 42.0
Hz). 13C NMR (50 MHz, CDCl3) δ 11.1 (3
CH2, J
C-
119
Sn = 348.0
Hz, J
C-
117
Sn = 332.0
Hz), 13.6 (3 CH3), 27.2 (3 CH2, J
C-
119
Sn = J
C-
117
Sn = 60.0
Hz), 28.6 (3 CH2, J
C-
119
Sn = J C-
117
Sn = 20.0
Hz), 42.6 (CH2, J
C-
119
Sn = J
C-
117
Sn = 32.0
Hz), 60.9 (CH2), 110.0 (C), 145.2 (CH, J
C-
119
Sn = J
C-
117
Sn = 20.0
Hz). MS (CI, CH4): for major 120Sn
isotope, m/z 377, 322, 307,
252. Anal. calcd for C16H33IOSn: C, 39.46;
H, 6.83; I, 26.06; O, 3.29; Sn 24.37; Found: C, 39.88; H, 7.09.
Selected NMR spectroscopic data
Z
-12: 1H
NMR (200 MHz, CDCl3) δ 2.22 (q, J = 6.5 Hz, 2 H), 3.63 (t, J = 6.5 Hz, 2 H), 6.51 (t, J = 6.5 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 40.4 (CH2), 55.5
(C), 59.9 (CH2), 143.5 (CH).
E
-13: 1H
NMR (200 MHz, CDCl3) δ 2.37 (q, J = 7.0 Hz, 2 H), 3.72 (t, J = 7.0 Hz, 2 H), 6.90 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 37.8 (CH2), 51.0
(C), 60.3 (CH2), 143.7 (CH).
14
: 1H NMR (200
MHz, CDCl3) δ 1.8 (s, 1 H), 2.44 (q, J = 6.5 Hz, 2 H), 3.76 (t, J = 6.5 Hz, 2 H), 6.48 (t, J = 6.5 Hz, 1 H). 13C
NMR (50 MHz, CDCl3) δ 36.2 (CH2),
60.3 (CH2), 90.5 (C), 135.1 (CH).
E
-15: 1H
NMR (200 MHz, CDCl3) δ 2.43 (q, J = 7.0 Hz, 2 H), 3.69 (t, J = 7.0 Hz, 2 H), 6.51 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 34.9 (CH2), 60.5
(CH2), 68.5 (C), 140.3 (CH).
Z
-16: 1H
NMR (200 MHz, CDCl3) δ 2.34 (q, J = 7.0 Hz, 2 H), 3.73 (t, J = 7.0 Hz, 2 H), 6.18 (t, J = 7.0 Hz, 1 H). 13C NMR
(50 MHz, CDCl3) δ 39.2 (CH2), 60.4
(CH2), 75.7 (C), 137.3 (CH).