Aktuelle Ernährungsmedizin 2003; 28(3): 143-150
DOI: 10.1055/s-2003-39438
Originalbeitrag
© Georg Thieme Verlag Stuttgart · New York

Das metabolische Syndrom: Bedeutung von Zytokinen als endokrine und metabolische Signalmoleküle

Metabolic Syndrome: Role of Cytokines as Endocrine and Metabolic MoleculesJ.  Spranger1 , M.  Möhlig1 , A.  F. H.  Pfeiffer1
  • 1Abteilung Klinische Ernährung, Deutsches Institut für Ernährungsforschung, Bergholz-Rehbrücke, Abteilung für Endokrinologie, Diabetes und Ernährungsmedizin, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin
Manuskript nach einem Vortrag bei der 18. Jahrestagung der Deutschen Adipositas-Gesellschaft vom 3. - 5.10.2002 in Dresden
Further Information

Publication History

Publication Date:
26 May 2003 (online)

Zusammenfassung

Die Häufigkeit des metabolischen Syndroms (Adipositas, Hypertonie, Fettstoffwechselstörung und gestörter Glukosemetabolismus) nimmt weltweit zu. Welche Mechanismen die verschiedenen Komponenten und Komplikationen des metabolischen Syndroms miteinander verbinden, ist bislang nur unzureichend geklärt. Zytokine könnten zumindest Teile dieser Lücke füllen. Zentral wirksame Zytokine wie Leptin oder Ghrelin sind offensichtlich wichtige Faktoren bei der Aufrechterhaltung der mittel- und langfristigen Energiehomöostase und ihre Dysregulation könnte an der Entstehung der Adipositas beteiligt sein. Adipozytokine wie Resistin oder Adiponectin scheinen an der Entstehung der adipositasassoziierten Insulinresistenz beteiligt zu sein. Es gibt zunehmend Hinweise, dass insbesondere inflammatorisch wirksame Zytokine wie z. B. Interleukin-6 an der Entstehung von Komplikationen des metabolischen Syndroms beteiligt sind. Die Identifizierung von pathogenetisch relevanten Faktoren bei der Entstehung des metabolischen Syndroms bzw. dessen Komplikationen ist nicht nur für die Aufklärung der Pathogenese von großer Bedeutung. Einerseits können möglicherweise neue Marker beschrieben werden, die zur Identifizierung von Risikopersonen genutzt werden können. Andererseits ergeben sich langfristig möglicherweise neue therapeutische Ansätze zur Behandlung des metabolischen Syndroms oder dessen Komplikationen.

Abstract

The incidence of the metabolic syndrome (obesity, hypertension, hyperlipoproteinemia, impaired glucose metabolism) is increasing world-wide. The precise mechanisms linking various components and complications of the metabolic syndrome are unclear yet. Cytokines fulfil some of the required criteria of such a link. Neuroendocrine cytokines (i. e. leptin or ghrelin) appear to be important in maintaining middle- and long-term energy homeostasis. Dysregulation of such factors is likely to be involved in the development of obesity. Adipocytokines (i. e. Adiponectin, Resistin) may link obesity and insulin resistance. There is increasing evidence that inflammatory cytokines such as Interleukin-6 or TNF-α play a central role in the development of type 2 diabetes and atherosclerosis. Various cytokines or even their combination may allow a better identification of individuals at risk to develop the metabolic syndrome or its complications. Additionally some cytokines are promising therapeutic targets and modification of their expression and/or their effects may result in valuable new therapeutic approaches.

Literatur

  • 1 Alberti K G, Zimmet P Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation.  Diabet Med. 1998;  15 (7) 539-553
  • 2 Reaven G M. Banting lecture 1988. Role of insulin resistance in human disease.  Diabetes. 1988;  37 (12) 1595-1607
  • 3 Ford E S, Giles W H, Dietz W H. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey.  JAMA. 2002;  287 (3) 356-359
  • 4 Chen W, Srinivasan S R, Elkasabany A, Berenson G S. The association of cardiovascular risk factor clustering related to insulin resistance syndrome (Syndrome X) between young parents and their offspring: the Bogalusa Heart Study.  Atherosclerosis. 1999;  145 (1) 197-205
  • 5 Poulsen P, Vaag A, Kyvik K, Beck-Nielsen H. Genetic versus environmental aetiology of the metabolic syndrome among male and female twins.  Diabetologia. 2001;  44 (5) 537-543
  • 6 Groop L. Genetics of the metabolic syndrome.  Br J Nutr. 2000;  83, Suppl 1 S39-48
  • 7 Flegal K M, Carroll M D, Ogden C L, Johnson C L. Prevalence and trends in obesity among US adults, 1999 - 2000.  JAMA. 2002;  288 (14) 1723-1727
  • 8 Bergmann K E, Mensink G BM. Körpermaße und Übergewicht.  Gesundheitswesen. 1999;  61 S115-S120
  • 9 Amos A F, McCarty D J, Zimmet P. The rising global burden of diabetes and its complications: estimates and projections to the year 2010.  Diabet Med. 1997;  14 (Suppl 5) S1-85
  • 10 King H, Aubert R E, Herman W H. Global burden of diabetes, 1995 - 2025: prevalence, numerical estimates, and projections.  Diabetes Care. 1998;  21 (9) 1414-1431
  • 11 Thefeld W. Prävalenz des Diabetes mellitus in der erwachsenen Bevölkerung Deutschlands.  Gesundheitswesen. 1999;  61 S85-S89
  • 12 Lorenz N, Hillenbrand H. Wieviel Diabetiker gibt es in Deutschland?.  Diabetes Journal. 1993;  93 4-B
  • 13 Wilson P W, D'Agostino R B, Levy D, Belanger A M, Silbershatz H, Kannel W B. Prediction of coronary heart disease using risk factor categories.  Circulation. 1998;  97 (18) 1837-1847
  • 14 Agodoa L Y, Jones C A, Held P J. End-stage renal disease in the USA: data from the United States Renal Data System.  Am J Nephrol. 1996;  16 (1) 7-16
  • 15 Resnick H E, Valsania P, Phillips C L. Diabetes mellitus and nontraumatic lower extremity amputation in black and white Americans: the National Health and Nutrition Examination Survey Epidemiologic Follow-up Study, 1971 - 1992.  Arch Intern Med. 1999;  159 (20) 2470-2475
  • 16 Mayfield J A, Reiber G E, Maynard C, Czerniecki J M, Caps M T, Sangeorzan B J. Trends in lower limb amputation in the Veterans Health Administration, 1989 - 1998.  J Rehabil Res Dev. 2000;  37 (1) 23-30
  • 17 DeFronzo R A. Pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: a balanced overview.  Diabetologia. 1992;  35 (4) 389-397
  • 18 Reaven G M, Moore J, Greenfield M. Quantification of insulin secretion and in vivo insulin action in nonobese and moderately obese individuals with normal glucose tolerance.  Diabetes. 1983;  32 (7) 600-604
  • 19 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 (6505) 425-432
  • 20 Schwartz M W, Seeley R J. Seminars in medicine of the Beth Israel Deaconess Medical Center. Neuroendocrine responses to starvation and weight loss.  N Engl J Med. 1997;  336 (25) 1802-1811
  • 21 Chen H, Charlat O, Tartaglia L A, Woolf E A, Weng X, Ellis S J, Lakey N D, Culpepper J, Moore K J, Breitbart R E, Duyk G M, Tepper R I, Morgenstern J P. Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice.  Cell. 1996;  84 (3) 491-495
  • 22 Pelleymounter M A, Cullen M J, Baker M B, Hecht R, Winters D, Boone T, Collins F. Effects of the obese gene product on body weight regulation in ob/ob mice.  Science. 1995;  269 (5223) 540-543
  • 23 Montague C T, Farooqi I S, Whitehead J P, Soos M A, Rau H, Wareham N J, Sewter C P, Digby J E, Mohammed S N, Hurst J A, Cheetham C H, Earley A R, Barnett A H, Prins J B, O'Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature. 1997;  387 (6636) 903-908
  • 24 Farooqi I S, Matarese G, Lord G M, Keogh J M, Lawrence E, Agwu C, Sanna V, Jebb S A, Perna F, Fontana S, Lechler R I, DePaoli A M, O'Rahilly S. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency.  J Clin Invest. 2002;  110 (8) 1093-1103
  • 25 Clement K, Vaisse C, Lahlou N, Cabrol S, Pelloux V, Cassuto D, Gourmelen M, Dina C, Chambaz J, Lacorte J M, Basdevant A, Bougneres P, Lebouc Y, Froguel P, Guy-Grand B. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.  Nature. 1998;  392 (6674) 398-401
  • 26 Considine R V, Sinha M K, Heiman M L, Kriauciunas A, Stephens T W, Nyce M R, Ohannesian J P, Marco C C, McKee L J, Bauer T L. et al . Serum immunoreactive-leptin concentrations in normal-weight and obese humans.  N Engl J Med. 1996;  334 (5) 292-295
  • 27 Levin N, Nelson C, Gurney A, Vandlen R, de Sauvage F. Decreased food intake does not completely account for adiposity reduction after ob protein infusion.  Proc Natl Acad Sci USA. 1996;  93 (4) 1726-1730
  • 28 Schwartz M W, Morton G J. Obesity: keeping hunger at bay.  Nature. 2002;  418 (6898) 595-597
  • 29 Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans.  Nat Genet. 1998;  19 (2) 155-157
  • 30 Yeo G S, Farooqi I S, Aminian S, Halsall D J, Stanhope R G, O'Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity.  Nat Genet. 1998;  20 (2) 111-112
  • 31 Gu W, Tu Z, Kleyn P W, Kissebah A, Duprat L, Lee J, Chin W, Maruti S, Deng N, Fisher S L, Franco L S, Burn P, Yagaloff K A, Nathan J, Heymsfield S, Albu J, Pi-Sunyer F X, Allison D B. Identification and functional analysis of novel human melanocortin-4 receptor variants.  Diabetes. 1999;  48 (3) 635-639
  • 32 Farooqi I S, Yeo G S, Keogh J M, Aminian S, Jebb S A, Butler G, Cheetham T, O'Rahilly S. Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency.  J Clin Invest. 2000;  106 (2) 271-279
  • 33 Miraglia Del Giudice E, Cirillo G, Nigro V, Santoro N, D'Urso L, Raimondo P, Cozzolino D, Scafato D, Perrone L. Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity.  Int J Obes Relat Metab Disord. 2002;  26 (5) 647-651
  • 34 Schwartz M W, Peskind E, Raskind M, Boyko E J, Porte D. Cerebrospinal fluid leptin levels: relationship to plasma levels and to adiposity in humans.  Nat Med. 1996;  2 (5) 589-593
  • 35 Ravussin E, Pratley R E, Maffei M, Wang H, Friedman J M, Bennett P H, Bogardus C. Relatively low plasma leptin concentrations precede weight gain in Pima Indians.  Nat Med. 1997;  3 (2) 238-240
  • 36 Tschop M, Smiley D L, Heiman M L. Ghrelin induces adiposity in rodents.  Nature. 2000;  407 (6806) 908-913
  • 37 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal M S, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans.  Endocrinology. 2000;  141 (11) 4255-4261
  • 38 Wren A M, Seal L J, Cohen M A, Brynes A E, Frost G S, Murphy K G, Dhillo W S, Ghatei M A, Bloom S R. Ghrelin enhances appetite and increases food intake in humans.  J Clin Endocrinol Metab. 2001;  86 (12) 5992
  • 39 Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats.  Diabetes. 2001;  50 (11) 2438-2443
  • 40 Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding.  Nature. 2001;  409 (6817) 194-198
  • 41 Tschop M, Wawarta R, Riepl R L, Friedrich S, Bidlingmaier M, Landgraf R, Folwaczny C. Post-prandial decrease of circulating human ghrelin levels.  J Endocrinol Invest. 2001;  24 (6) RC19-21
  • 42 Cummings D E, Purnell J Q, Frayo R S, Schmidova K, Wisse B E, Weigle D S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans.  Diabetes. 2001;  50 (8) 1714-1719
  • 43 Shiiya T, Nakazato M, Mizuta M, Date Y, Mondal M S, Tanaka M, Nozoe S, Hosoda H, Kangawa K, Matsukura S. Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion.  J Clin Endocrinol Metab. 2002;  87 (1) 240-244
  • 44 Möhlig M, Spranger J, Otto B, Ristow M, Tschöp M, Pfeiffer A FH. Euglycemic hyperinsulinemia, but not lipid infusion, decreases circulating ghrelin levels in humans.  J Endocrinol Invest. 2002;  25 (11) RC36-8
  • 45 Lucidi P, Murdolo G, Di Loreto C, De Cicco A, Parlanti N, Fanelli C, Santeusanio F, Bolli G B, De Feo P. Ghrelin is not necessary for adequate hormonal counterregulation of insulin-induced hypoglycemia.  Diabetes. 2002;  51 (10) 2911-2914
  • 46 Cappiello V, Ronchi C, Morpurgo P S, Epaminonda P, Arosio M, Beck-Peccoz P, Spada A. Circulating ghrelin levels in basal conditions and during glucose tolerance test in acromegalic patients.  Eur J Endocrinol. 2002;  147 (2) 189-194
  • 47 Steppan C M, Bailey S T, Bhat S, Brown E J, Banerjee R R, Wright C M, Patel H R, Ahima R S, Lazar M A. The hormone resistin links obesity to diabetes.  Nature. 2001;  409 (6818) 307-312
  • 48 Way J M, Gorgun C Z, Tong Q, Uysal K T, Brown K K, Harrington W W, Oliver W R, Willson T M, Kliewer S A, Hotamisligil G S. Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists.  J Biol Chem. 2001;  276 (28) 25651-25653
  • 49 Shojima N, Sakoda H, Ogihara T, Fujishiro M, Katagiri H, Anai M, Onishi Y, Ono H, Inukai K, Abe M, Fukushima Y, Kikuchi M, Oka Y, Asano T. Humoral regulation of resistin expression in 3T3-L1 and mouse adipose cells.  Diabetes. 2002;  51 (6) 1737-1744
  • 50 Kim K H, Lee K, Moon Y S, Sul H S. A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation.  J Biol Chem. 2001;  276 (14) 11252-11256
  • 51 Hegele R A. Insulin resistance in human partial lipodystrophy.  Curr Atheroscler Rep. 2000;  2 (5) 397-404
  • 52 Hegele R A. Familial partial lipodystrophy: a monogenic form of the insulin resistance syndrome.  Mol Genet Metab. 2000;  71 (4) 539-544
  • 53 Scherer P E, Williams S, Fogliano M, Baldini G, Lodish H F. A novel serum protein similar to C1q, produced exclusively in adipocytes.  J Biol Chem. 1995;  270 (45) 26746-26749
  • 54 Berg A H, Combs T P, Du X, Brownlee M, Scherer P E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.  Nat Med. 2001;  7 (8) 947-953
  • 55 Combs T P, Berg A H, Obici S, Scherer P E, Rossetti L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.  J Clin Invest. 2001;  108 (12) 1875-1881
  • 56 Kubota N, Terauchi Y, Yamauchi T, Kubota T, Moroi M, Matsui J, Eto K, Yamashita T, Kamon J, Satoh H, Yano W, Froguel P, Nagai R, Kimura S, Kadowaki T, Noda T. Disruption of adiponectin causes insulin resistance and neointimal formation.  J Biol Chem. 2002;  277 (29) 25863-25866
  • 57 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8 (7) 731-737
  • 58 Ma K, Cabrero A, Saha P K, Kojima H, Li L, Chang B H, Paul A, Chan L. Increased beta-oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin.  J Biol Chem. 2002;  277 (38) 34658-34661
  • 59 Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway.  Circulation. 2000;  102 (11) 1296-1301
  • 60 Haque W A, Shimomura I, Matsuzawa Y, Garg A. Serum adiponectin and leptin levels in patients with lipodystrophies.  J Clin Endocrinol Metab. 2002;  87 (5) 2395
  • 61 Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.  Biochem Biophys Res Commun. 1999;  257 (1) 79-83
  • 62 Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein.  Diabetes. 2001;  50 (9) 2094-2099
  • 63 Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M, Kondo H, Furuyama N, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.  Diabetes. 2002;  51 (9) 2734-2741
  • 64 Lindsay R S, Funahashi T, Hanson R L, Matsuzawa Y, Tanaka S, Tataranni P A, Knowler W C, Krakoff J. Adiponectin and development of type 2 diabetes in the Pima Indian population.  Lancet. 2002;  360 (9326) 57-58
  • 65 Spranger J, Kroke A, Möhlig M, Bergmann M, Ristow M, Boeing H, Pfeiffer A FH. Adiponectin and protection against type 2 diabetes mellitus.  Lancet. 2003;  361 (9353) 226-228
  • 66 Vionnet N, Hani El H, Dupont S, Gallina S, Francke S, Dotte S, De Matos F, Durand E, Lepretre F, Lecoeur C, Gallina P, Zekiri L, Dina C, Froguel P. Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21 - q24.  Am J Hum Genet. 2000;  67 (6) 1470-1480
  • 67 Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P. Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p.  Diabetes. 2002;  51 (4) 1247-1255
  • 68 Comuzzie A G, Funahashi T, Sonnenberg G, Martin L J, Jacob H J, Black A E, Maas D, Takahashi M, Kihara S, Tanaka S, Matsuzawa Y, Blangero J, Cohen D, Kissebah A. The genetic basis of plasma variation in adiponectin, a global endophenotype for obesity and the metabolic syndrome.  J Clin Endocrinol Metab. 2001;  86 (9) 4321-4325
  • 69 Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T. Genetic variation in the gene encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population.  Diabetes. 2002;  51 (2) 536-540
  • 70 Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, Boutin P, Vaxillaire M, Lepretre F, Dupont S, Hara K, Clement K, Bihain B, Kadowaki T, Froguel P. Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians.  Hum Mol Genet. 2002;  11 (21) 2607-2614
  • 71 Ebstein W. Zur Therapie des Diabetes mellitus, insbesondere über die Anwendung des salicylsauren Natron bei demselben.  Berliner Klinische Wochenschrift. 1876;  24 337-340
  • 72 Williamson R T, Lond M D. On the treatment of glycosuria and diabetes mellitus with sodium salicylate.  Brit Med J. 1901;  1 760-762
  • 73 Reid J, MacDougall A I, Andrews M M. Aspirin and diabetes mellitus.  Brit Med J. 1957;  2 1071-1074
  • 74 Pickup J C, Mattock M B, Chusney G D, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X.  Diabetologia. 1997;  40 (11) 1286-1292
  • 75 Gouni I, Oka K, Etienne J, Chan L. Endotoxin-induced hypertriglyceridemia is mediated by suppression of lipoprotein lipase at a post-transcriptional level.  J Lipid Res. 1993;  34 (1) 139-146
  • 76 Schmidt M I, Duncan B B, Sharrett A R, Lindberg G, Savage P J, Offenbacher S, Azambuja M I, Tracy R P, Heiss G. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities study): a cohort study.  Lancet. 1999;  353 (9165) 1649-1652
  • 77 Freeman D J, Norrie J, Caslake M J, Gaw A, Ford I, Lowe G D, O'Reilly D S, Packard C J, Sattar N. C-reactive protein is an independent predictor of risk for the development of diabetes in the West of Scotland Coronary Prevention Study.  Diabetes. 2002;  51 (5) 1596-1600
  • 78 Pradhan A D, Manson J E, Rifai N, Buring J E, Ridker P M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus.  JAMA. 2001;  286 (3) 327-334
  • 79 Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann M M, Ristow M, Boeing H, Pfeiffer A F. Inflammatory Cytokines and the Risk to Develop Type 2 Diabetes: Results of the Prospective Population-Based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study.  Diabetes. 2003;  52 (3) 812-817
  • 80 Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects.  Diabetes. 2001;  50 (7) 1612-1617
  • 81 Kim J K, Kim Y J, Fillmore J J, Chen Y, Moore I, Lee J, Yuan M, Li Z W, Karin M, Perret P, Shoelson S E, Shulman G I. Prevention of fat-induced insulin resistance by salicylate.  J Clin Invest. 2001;  108 (3) 437-446
  • 82 Yuan M, Konstantopoulos N, Lee J, Hansen L, Li Z W, Karin M, Shoelson S E. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta.  Science. 2001;  293 (5535) 1673-1677
  • 83 Delhase M, Hayakawa M, Chen Y, Karin M. Positive and negative regulation of IkappaB kinase activity through IKKbeta subunit phosphorylation.  Science. 1999;  284 (5412) 309-313
  • 84 World Health Organisation .Definition, Diagnosis and Classification of Diabetes mellitus and its complications: Report of a WHO Consultation. Geneva; 1999

Joachim Spranger

Abteilung Klinische Ernährung · Deutsches Institut für Ernährungsforschung

Arthur-Scheunert-Allee 114 - 116

14558 Bergholz-Rehbrücke

Phone: 033200/88-771

Fax: 033200/88-777

Email: spranger@mail.dife.de

Email: joachim.spranger@medizin.fu-berlin.de