Int J Sports Med 2003; 24(4): 245-251
DOI: 10.1055/s-2003-39505
Physiology & Biochemistry
© Georg Thieme Verlag Stuttgart · New York

Effects of Submaximal Exercise on High-Density Lipoprotein-Cholesterol Subfractions

D. H.  Park1 , J. W.  Ransone2
  • 1Korea Sport Science Institute, Seoul, Korea
  • 2Southwest Texas State University, San Marcos TX 78666, USA
Weitere Informationen

Publikationsverlauf

Accepted after revision: January 8, 2003

Publikationsdatum:
04. Juni 2003 (online)

Abstract

Acute high-density lipoprotein-cholesterol (HDL) changes were determined in 18 healthy college aged-men completing two-counterbalanced running trials at different exercise intensities: trial 1 at 70 % lactate threshold (LT) (372.5 ± 28.9 kcal); trial 2 at LT intensity (365.9 ± 75.9 kcal). For each trial, blood samples were collected at pre-exercise (baseline), 15 min post-exercise (15 m PE) and 24 hours post-exercise (24 h). Serum samples were analyzed for HDL/HDL2/HDL3 subfraction, low density lipoprotein (LDL), very low density lipoprotein (VLDL), total cholesterol (TC), free cholesterol (FC), cholesterol ester, and triglycerides (TG). In addition, capillary blood samples were collected for analysis of blood lactate concentrations during incremental test to determine LT. All samples were corrected for plasma volume changes and compared to pre-exercise (baseline). In assessing the lipid and lipoprotein variables, the significant increase in HDL (p < 0.05) at the 24 h was due to the increase in both HDL2 and HDL3. The increase in 15 m PE TC at the LT intensity occurred while the decreases in 24 h TG and VLDL concentrations at the LT intensity occurred at different time periods, respectively. These decreases in the concentrations of TG and VLDL were significantly different, contributing to change in 24 h HDL concentration. No significant difference was determined in changes of HDL over time ratios of FC/CE and HDL2/HDL3. Therefore, the significant increase in 24 h HDL at LT intensity was potentially due to increases in both HDL2 and HDL3 subfractions even though 24 h FC was increased significantly. Exercise at LT intensity might favourably alter the lipid profile as demonstrated in 24 h HDL concentration in combination with decreases in TG and VLDL at 24 h post-exercise. Consequently, the LT intensity might appear to be the threshold intensity of acute aerobic exercise (expending 350 kcal) necessary to promote a significant increase in HDL.

References

  • 1 Aellen R, Hollmann W, Boutellier U. Effects of aerobic and anaerobic training on plasma lipoproteins.  Int J Sports Med. 1993;  14 396-400
  • 2 American Heart Association .Heart facts 1982. Dallas; American Heart Association 1982
  • 3 Anderson K M, Castelli W P, Levy D. Cholesterol and mortality: 30 years of follow up from the Framingham Study.  JAMA. 1987;  257 2176-2180
  • 4 Angelopoulos T J, Robertson R J. Effect of a single exercise bout on serum triglycerides in untrained men.  J Sports Med Phys Fitness. 1993;  33 264-267
  • 5 Angelopoulos T J, Robertson R J, Goss F L, Metz K F, LaPorte R E. Effect of repeated exercise bouts on high density lipoprotein-cholesterol and its subfractions HDL2-C and HDL3-C.  Int J Sports Med. 1993;  14 196-201
  • 6 Annuzzi G, Jansson E, Kaijser L, Holmquist L, Carlson L A. Increased removal rate of exogenous triglycerides after prolonged exercise in man: time course and effect of exercise duration.  Metabolism. 1987;  36 438-443
  • 7 Baldwin J, Snow R J, Febbraio M A. Effect of training status and relative exercise intensity on physiological responses in men.  Med Sci Sports Exerc. 2000;  32 1648-1654
  • 8 Barbara S, Cooper S, Dorothy P R. The Economic cost of illness revisited. Washington, DC; Department of Health, Education and Welfare, DHEW publication (SSA) 1976, 76 - 11703
  • 9 Beaver W L, Wasserman K, Whipp B J. Improved detection of lactate threshold during exercise using a log-log transformation.  J Appl Physiol. 1985;  59 1936-1940
  • 10 Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing.  Med Sci Sports Exerc. 1995;  27 863-867
  • 11 Berg A, Frey I, Baumstark M, Halle M, Keul J. Physical activity and lipoprotein disorders.  Sports Med. 1994;  17 6-21.
  • 12 Bounds R G, Grandjean P W, O’Brien B C, Inman C, Crouse S F. Diet and short term plasma lipoprotein-lipid changes after exercise in trained Men.  Int J Sport Nutr Exerc Metab. 2000;  10 114-127
  • 13 Cloey T A, Bachorik P S. Use of Dual-precipitation procedure for measuring HDL3 in normolipidemic Serum.  Clin Chem. 1989;  35 1390-1393
  • 14 Coyle E F, Coggan A R, Hopper M K, Walters T J. Determinants of endurance in well-trained cyclists.  J Appl Physiol. 1988;  64 2622-2630
  • 15 Crouse S F, O’Brien B C, Grandjean P W, Lowe R C, Rohack J J, Green J S. Effects of training and a single session of exercise on lipids and apolipoproteins in hypercholesterolemic men.  J Appl Physiol. 1997;  83 2019-2028
  • 16 Cullinane E, Lazarous B, Thompson P D, Saratelli A, Herbert P N. Acute effects of a single exercise session on serum lipids in untrained men.  Clinical Chimica Acta. 1981;  109 341-344
  • 17 Dwyer J, Bybee R. Heart rate indices of the anaerobic threshold.  Med Sci Sports Exerc. 1983;  15 72-76
  • 18 Ferguson M A, Alderson N L, Trost S G, Essig D A, Burke J R, Durstine J L. Effects of four different single exercise sessions on lipids, lipoproteins, and lipoprotein lipase.  J Appl Physiol. 1998;  85 1169-1174
  • 19 Frey I, Baumstark M W, Berg A, Keul J. Influence of acute maximal exercise on lecithin:cholesterol acyltransferase activity in healthy adults of differing aerobic performance.  Eur J App Physiol. 1991;  62 31-35
  • 20 Friedewald W T, Levy R I, Fredrickson D S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.  Clin Chem. 1972;  18 499-502
  • 21 Gillen C M, Lee R, Mack G W, Tomaselli C M, Nishiyasu T, Nadel E R. Plasma volume expansion in humans after a single intense exercise protocol.  J Appl Physiol. 1991;  71 1914-1920
  • 22 Gordon D J, Probstfield J L, Garrison R J, Neaton J D, Castelli W P, Knoke J D, Jacobs D R, Bangdiwala S, Tyroler H A. High-density lipoprotien cholesterol and cardiovascular disease.  Circulation. 1989;  79 8-15
  • 23 Gordon P M, Fowler S, Warty V, Danduran M, Visich P, Keteyian S. Effects of acute exercise on high density lipoprotein cholesterol and high density lipoprotein subfractions in moderately trained females.  Br J Sports Med. 1998;  32 63-67
  • 24 Green H J, Thomson J A, Ball M E, Hughson R L, Houston M E, Sharratt M T. Alteration in blood volume following short-term supramaximal exercise.  J Appl Physiol. 1984;  56 145-149
  • 25 Harrison M H, Edwards R J, Leitch D R. Effect of exercise and thermal stress on plasma volume.  J Appl Physiol. 1975;  39 925-931
  • 26 Heck H, Mader A, Hess G, Mucke S, Muller R, Hollmann W. Justification of the 4-mmol/l lactate threshold.  Int J Sports Med. 1985;  6 117-130
  • 27 Hicks A L, MacDougall J D, Muckle T J. Acute changes in high-density lipoprotein cholesterol with exercise of different intensities.  J Appl Physiol. 1987;  63 1956-1960
  • 28 Hsia D C. Accuracy of Medicare reimbursement for cardiac arrest.  JAMA. 1990;  264 59-62
  • 29 Hughes R A, Thorland W G, Housh T J, Johnson G O. The effect of exercise intensity on serum lipoprotein responses.  J Sports Med Phys Fitness. 1990;  30 254-260
  • 30 Jacobs I, Lithell H, Karlsson J. Dietary effects on glycogen and lipoprotein lipase activity in skeletal muscle in man.  Acta Physiol Scand. 1982;  115 85-90
  • 31 Kantor M A, Cullinane E M, Sady S P, Herbert P N, Thompson P D. Exercise acutely increases high density lipoprotein-cholesterol and lipoprotein lipase activity in trained and untrained men.  Metabolism. 1987;  36 188-192
  • 32 Kenney W L. ACSM’s Guidelines for Exercise Testing and Prescription (5th ed.): Physical Fitness Testing. Philadelphia, PA; Williams & Wilkins 1995
  • 33 Kokkinos P F, Fernhall B. Physical activity and high density lipoprotein cholesterol levels: what is the relationship?.  Sports Med. 1999;  28 307-314
  • 34 Levi I. Cholesterol, lipoproteins, apoproteins, and heart disease: Present status and future prospects.  Clin Chem. 1981;  27 653-662
  • 35 McLellan T M, Gass G C. Metabolic and cardiorespiratory responses relative to the anaerobic threshold.  Med Sci Sports Exerc. 1989;  21 191-198
  • 36 Murray R K, Granner D K, Mayes P A, Rodwell V W. Harper’s Biochemistry. (24th ed.) Appelton & Lange, Stamford, CT 1989: 254-270
  • 37 Nikkila E A, Taskinen M R, Sane T. Plasma high-density lipoprotein concentration and subfaction distribution in relation to triglyceride metabolism.  Am Heart J. 1987;  113 543-548
  • 38 Novosadova J. The changes in hematocrit, hemoglobin, plasma volume and proteins during and after different types of exercise.  Eur J Appl Physiol. 1977;  36 223-230
  • 39 Orok C J, Hughson R L, Green H J, Thomson J A. Blood lactate responses in incremental exercise as predictors of constant load performance.  Eur J Appl Physiol. 1989;  59 262-267
  • 40 Pivarnik J M, Leeds E M, Wilkerson J E. Effects of endurance exercise on metabolic water production and plasma volume.  J Appl Physiol. 1984;  56 613-618
  • 41 Pronk N P. Short term effects of exercise on plasma lipids and lipoproteins in humans.  Sports Med. 1993;  16 431-448
  • 42 Rifai N, Warnick G R. Laboratory Measurement of Lipids, Lipoproteins and Apolipoprotiens (eds.): Measurement and Clinical Significance of High-Density Lipoprotein Cholesterol Subclasses. Washington, DC; AACC Press 1994: 207-222
  • 43 Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4mmol/L lactate.  Int J Sports Med. 1982;  3 105-110
  • 44 Stein R A, Michielli D W, Glantz M D, Sardy H, Cohen A, Goldberg N, Brown C D. Effects of different exercise training intensities on lipoprotein cholesterol fractions in healthy middle- aged men.  Am Heart J. 1990;  119 277-283
  • 45 Stoudemire N M, Widman L, Pass K A, Mcginnes C L, Gaesser G A, Weltman A. The validity of regulating blood lactate concentration during running by ratings of perceived exertion.  Med Sci Sports Exerc. 1996;  28 490-495
  • 46 Swank A M, Robertson R J, Deitrich R W, Bates M. The effect of acute exercise on high density lipoprotein-cholesterol and the subfractions in females.  Atherosclerosis. 1987;  63 187-192
  • 47 Tim M, Holger H, Gabriel W, Wilfried K. Is determination of exercise intensities as percentage of V˙O2max or HRmax adequate?.  Med Sci Sports Exerc. 1999;  31 1342-1345
  • 48 Tran Z, Weltman A. The effects of exercise on blood lipids and lipoproteins: a meta-analysis of studies.  Med Sci Sports Exerc . 1983;  15 393-402
  • 49 van Beaumont W, Underkofler S, Beaumont S. Erythrocyte volume, plasma volume, and acid-base changed in exercise and heat dehydration.  J Appl Physiol. 1981;  50 1255-1262
  • 50 van Beaumont W. Evaluation of hemoconcentration from hematocrit measurements.  J Appl Physiol. 1972;  32 712-713
  • 51 Visich P S, Goss F L, Gordon P M, Robertson R J, Warty V, Denys B G, Metz K F. Effects of exercise with varying energy expenditure on high-density lipoprotein-cholesterol.  Eur J Appl Physiol. 1996;  72 242-248.
  • 52 Warnick G R, Benderson J, Albers J J. Dextran sulfate-Mn2+ precipitation procedure for quantitation of high-density lipoprotein cholesterol.  Clin Chem. 1982;  28 1379-1388
  • 53 Weltman A, Weltman J, Rutt R, Seip R, Levine S, Snead D, Kaiser D, Rogol A. Percentage of maximal heart rate, heart rate reserve, and V˙O2 peak for determining endurance training intensity in sedentary women.  Int J Sports Med. 1989;  10 212-216

J. Ransone, Ph. D. Professor

College of Education

Southwest Texas State University · San Marcos Texas 78666 · USA ·

Telefon: (+1) 512 744 9439

eMail: ransone@swt.edu