Int J Sports Med 2003; 24(4): 304-310
DOI: 10.1055/s-2003-39508
Training & Testing
© Georg Thieme Verlag Stuttgart · New York

Effect of Gender on Mechanical Power Output During Repeated Bouts of Maximal Running in Trained Teenagers

T.  Yanagiya1 , H.  Kanehisa2 , M.  Kouzaki2 , Y.  Kawakami2 , T.  Fukunaga1
  • 1Department of Sports Sciences, School of Human Sciences, Waseda University Saitama, Japan
  • 2Department of Life Sciences (Sports Sciences), University of Tokyo, Tokyo, Japan
Further Information

Publication History

Accepted after revision: November 20, 2002

Publication Date:
04 June 2003 (online)

Abstract

Seven high school boys (16.4 ± 0.5 y, mean ± SD) and 7 girls (16.4 ± 0.5 y), who specialized in track and field events, performed ten 5-s maximal sprint runs with an interval of 10s between each sprint on a non-motorized running ergometer. In each sprint, the mean mechanical power (MP) from the start until the belt velocity of the ergometer (i. e., running velocity) peaked was calculated. The boys showed significantly higher MP than the girls in all sprints. However, when MP was expressed as the ratio to the total volume of muscles located in the right lower limb (MP × MV-1), estimated using a bioelectrical impedance analysis, significant gender effect was limited to the values at the 1st and 2nd sprints. The decline of MP over the ten sprints, expressed as a relative value to that at the 1st sprint, was greater in boys (46.2 ± 7.6 %) than in girls (33.9 ± 8.6 %), and significantly correlated with MP × MV-1 at the 1st sprint (r = 0.568, p < 0.05). However, no significant difference between the boys and girls was found in the relative difference between MP values at the 3rd and 10th sprints, where the gender difference in MP × MV-1 at every sprint was insignificant. The findings here indicate that, for trained teenage boys and girls, 1) significant gender difference in mechanical power developed during repeated bouts of maximal running exists only in the initial phase of the task, when the difference in the volume of the lower limb muscles is normalized, and 2) it may be a reason for a greater decline of mechanical power developed during the bout in boys compared to girls.

References

  • 1 Balsom P D, Seger J Y, Sjodin B, Ekblom B. Maximal-intensity intermittent exercise: effect of recovery duration.  Int J Sports Med. 1992;  13 528-533
  • 2 Bell D G, Jacobs I. Muscle fiber-specific glycogen utilization in strength- trained males and females.  Med Sci Sports Exerc. 1989;  21 649-654
  • 3 Bishop P, Cureton K, Collins M. Sex difference in muscle strength in equally-trained men and women.  Ergonomics. 1987;  30 675-687
  • 4 Bogdanis G C, Nevill M E, Boobis L H, Lakomy H KA, Nevill A M. Recovery of power output and muscle metabolites following 30 s of maximal sprint cycling in man.  J Physiol. 1995;  482 467-480
  • 5 Brooks S, Nevill M E, Meleagros L, Lakomy H KA, Hall G M, Bloom S R, Williams C. The hormonal responses to repetitive brief maximal exercise in humans.  Eur J Appl Physiol. 1990;  60 144-148
  • 6 Colliander E B, Dudley G A, Tesch P A. Skeletal muscle fiber type composition and performance during repeated bouts of maximal, concentric contractions.  Eur J Appl Physiol. 1988;  58 81-86
  • 7 Chelly S M, Denis C. Leg power and hopping stiffness: relationship with sprint running performance.  Med Sci Sports Exerc. 2001;  33 326-333
  • 8 Delgado A, Allemandou A, Peres G. Changes in the characteristics of anaerobic exercise in the upper limb during puberty in boys.  Eur J Appl Physiol. 1993;  66 376-380
  • 9 Eriksson B O, Kalsson J, Saltin B. Muscle metabolites during in pubertal boys.  Acta Physiol Scand. 1971;  Suppl 217 154-157
  • 10 Falgairette G, Bedu M, Fellmann N, Van-Praagh E, Coudert J. Bioenergetic profile in 144 boys aged from 6 to 15 years with special reference to sexual maturation.  Eur J Appl Physiol. 1991;  62 151-156
  • 11 Fellmann N, Bedu M, Spielvogel H, Falgairette G, van Praagh E, Jarrige J-F, Coudert J. Anaerobic metabolism during pubertal development at high altitude.  J Appl Physiol. 1988;  64 1382-1386
  • 12 Froese E A, Houston M E. Performance during the Wingate anaerobic test and muscle morphology in males and females.  Int J Sports Med. 1987;  8 35-39
  • 13 Funato K, Yanagiya T, Fukunaga T. Ergometry for estimation of mechanical power output in sprint running in human using a newly developed self-driven treadmill.  Eur J Appl Physiol. 2001;  84 169-173
  • 14 Gaitanos G C, Nevill M E, Brooks S, Williams C. Repeated bouts of sprint running after induced alkalosis.  J Sports Sci. 1991;  9 355-370
  • 15 Gaitanos G C, Williams C, Boobis L H, Brooks S. Human muscle metabolism during intermittent maximal exercise.  J Appl Physiol. 1993;  75 712-719
  • 16 Gratas-Delamarche A, Cam R L, Delamarche P, Monnier M, Koubi H. Lactate and catecholamine responses in male and female sprinters during a Wingate test.  Eur J Appl Physiol. 1994;  68 362-366
  • 17 Greenhalf P L, Nevill M E, Soderlund K, Bodin K, Boobis L H, Williams C, Hultman E. The metabolic responses of human type I and II muscle fibers during maximal treadmill sprinting.  J Physiol. 1994;  478 449-455
  • 18 Hamilton A L, Nevill M E, Brooks S, Williams C. Physiological responses to maximal intermittent exercise: differences between endurance-trained runners and games players.  J Sports Sci. 1991;  9 371-382
  • 19 Hill D W, Smith J C. Gender difference in anaerobic capacity: role of aerobic contribution.  Br J Sports Med. 1993;  27 45-48
  • 20 Mayhew J L, Salm P C. Gender differences in anaerobic power tests.  Eur J Appl Physiol. 1990;  60 133-138
  • 21 Miller A EJ, MacDougall J D, Tarnopolsky M S, Sale D G. Gender differences in strength and muscle fiber characteristics.  Eur J Appl Physiol. 1993;  73 544-551
  • 22 Miyatani M, Kanehisa H, Masuo Y, Ito M, Fukunaga T. Validity of estimating limb muscle volume by bioelectrical impedance.  J Appl Physiol. 2001;  91 386-394
  • 23 Murphy M M, Patton J F, Frederick F A. Comparative anaerobic power of men and women.  Aviat Space Environ Med. 1986;  57 636-641
  • 24 Nevill M E, Williams C, Roper D, Slater C, Nevill A M. Effect of diet on performance during recovery from intermittent sprint exercise.  J Sports Sci. 1993;  11 119-126
  • 25 Ryushi T, Fukunaga T. Influence of subtype of fast twitch fibers on isokinetic strength in untrained men.  Int J Sports Med. 1986;  7 250-253
  • 26 Saavedra C, Lagasse P, Bouchard C, Simoneau JA. Maximal anaerobic performance of the knee extensor muscles during growth.  Med Sci Sports Exerc. 1991;  23 1083-1089
  • 27 Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E. Fiber types and metabolic potentials of skeletal muscles in sedentary men and endurance runners.  Ann N Y Acad Sci. 1977;  301 3-29
  • 28 Sutter E, Herzog W, Wiley J P, Macintosh B R. Muscle fiber type distribution as estimated by cybex testing and by muscle biopsy.  Med Sci Sports Exerc. 1993;  25 363-370
  • 29 Tesch P A, Thorsspn A, Fujitsuka N. Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise.  J Appl Physiol. 1989;  66 1756-1759
  • 30 Thorstensson A, Karlsson J. Fatiguablity and fiber composition of human skeletal muscle.  Acta Physiol Scand. 1976;  98 318-322
  • 31 Wootton S, Williams C. The influence of recovery duration on repeated maximal sprints. In: Knuttgen HG, Vogel HG, Poortmans J (eds). Biochemistry of Exercise. Volume 13. Champaign IL; Human Kinetics 1983: 269-273

H. Kanehisa, Ph. D.

Department of Life Sciences (Sports Sciences) · University of Tokyo

3-8-1 Komaba Meguro-ku · Tokyo · Japan ·

Phone: +81 3 5454 6854

Fax: +81 3 5454 4317

Email: hkane@idaten.c.u-tokyo.ac.jp