Subscribe to RSS
DOI: 10.1055/s-2003-39895
Synthesis of Secondary Amines by Reduction of α-Amidoalkylphenyl Sulfones with Sodium Acetoxyborohydride
Publication History
Publication Date:
11 June 2003 (online)
Abstract
α-Amidoalkylphenyl sulfones are stable precursors of reactive N-acylimines and can be fully reduced to the corresponding secondary amines using sodium acetoxyborohydride in dioxane at reflux.
Key words
amides - amines - imines - reductions - sulfones
-
1a
Salvatore RN.Yoon CH.Jung KW. Tetrahedron 2001, 57: 7785 -
1b
The Chemistry of
Amino, Nitroso, Nitro and Related Groups
Patai S. Wiley; Chichester: 1996. - 2
Fujita K.Li Z.Ozeki N.Yamaguchi R. Tetrahedron Lett. 2003, 44: 2687 -
3a
Alvaro G.Savoia D. Synlett 2002, 651 -
3b
Bloch R. Chem. Rev. 1998, 98: 1407 -
3c
Enders D.Reinhold U. Tetrahedron: Asymmetry 1997, 8: 1895 -
4a
Blackburn L.Taylor RJK. Org. Lett. 2001, 3: 1637 -
4b
Iwasaki F.Onomura O.Mishima K.Kanematsu T.Maki T.Matsumura Y. Tetrahedron Lett. 2001, 42: 2525 -
4c
Banik BK.Hackfeld L.Becker FF. Synth. Commun. 2001, 31: 1581 -
4d
Blackwell JM.Sonmor ER.Scoccitti T.Piers WE. Org. Lett. 2000, 2: 3921 -
4e
Hansen MC.Buchwald SL. Org. Lett. 2000, 2: 713 -
4f
Hiroi R.Miyoshi N.Wada M. Chem. Lett. 2002, 274 -
4g
Pelletier JC.Khan A.Tang Z. Org. Lett. 2002, 4: 4611 - 5
Radivoy G.Alonso F.Yus M. Synthesis 2001, 427 ; and references cited therein -
6a
Borzilleri RM.Weinreb SM. Synthesis 1995, 347 -
6b
Scola PM.Weinreb SM. Chem. Rev. 1989, 89: 1525 -
7a
Zaugg HA. Synthesis 1984, 85 -
7b
Zaugg HA. Synthesis 1984, 181 - For some recent papers on the utilization of α-amidoalkyl-phenyl sulfones see:
-
8a
Petrini M.Profeta R.Righi P. J. Org. Chem. 2002, 67: 4530 -
8b
Mecozzi T.Petrini M.Profeta R. J. Org. Chem. 2001, 66: 8264 -
8c
Dahmen S.Bräse S. J. Am. Chem. Soc. 2002, 124: 5940 -
8d
Enders D.Oberbörsch S. Synlett 2002, 471 -
8e
Hermanns N.Dahmen S.Bolm C.Bräse S. Angew. Chem. Int. Ed. 2002, 41: 3692 -
8f
Palomo C.Oiarbide M.Landa A.González-Rego MC.García JM.González A.Odriozola JM.Martín-Pastor M.Linden A. J. Am. Chem. Soc. 2002, 124: 8637 -
8g
Zhang J.Wie C.Li C.-J. Tetrahedron Lett. 2002, 43: 5731 -
8h
Klepacz A.Zwierzak A. Tetrahedron Lett. 2002, 43: 1079 - 9
Bernacka E.Klepacz A.Zwierzak A. Tetrahedron Lett. 2001, 42: 5093 - 10
Periasamy M.Thirumalaikumar M. J. Organomet. Chem. 2000, 609: 137 - 11
Gribble G. Chem. Soc. Rev. 1998, 27: 395 -
12a
Umino N.Iwakuma T.Itoh N. Tetrahedron Lett. 1976, 763 -
12b
Umino N.Iwakuma T.Itoh N. Tetrahedron Lett. 1976, 2875 -
12c
Godskensen M.Lundt I.Madsen R.Winchester B. Bioorg. Med. Chem. 1996, 4: 1857 -
12d
Morris J.Wishka DG. J. Org. Chem. 1991, 56: 3549 -
12e
Sundaramoorthi R.Marazano C.Fourrey J.-L.Das BC. Tetrahedron Lett. 1984, 25: 3191 -
12f
Nutaitis CF. Synth. Commun. 1992, 22: 1081 - 14 Sulfones 7a-d obtained from fluoroacetamide are reduced faster
(1-1.5 h) than other sulfones. Prolonged refluxing times
(3-4 h) causes partial removal of the fluorine atom. N-Substituted fluoroacetamides have been
previously reduced using BH3-THF system:
Aoki K.Tomioka K.Noguchi H.Koga K. Tetrahedron 1997, 53: 13641 - 15
Gautam VK.Singh J.Dhillon RS. J. Org. Chem. 1988, 53: 187 -
16a
Baldwin JE.Otsuka M.Wallace PM. Tetrahedron 1986, 42: 3097 -
16b
Padwa A.Harring SR.Semones MA. J. Org. Chem. 1998, 63: 44
References
Typical Reduction Procedure: To a stirred suspension of NaBH4 (10 mmol) in dry dioxane (10 mL), HOAc (10 mmol) was added dropwise in 10 min. After stirring for further 15 min, sulfone 7 (2 mmol) dissolved in dioxane (3 mL) was added and the white suspension was refluxed for 3 h. After cooling at r.t. the mixture was treated with H2O (4 mL), extracted with CHCl3 (4 × 10 mL) and the organic phase was dried over Na2SO4. After evaporation of the solvent the crude amine was purified by column chromatography. Alternatively the crude amine was dissolved in HCl sat. in MeOH to obtain the corresponding hydrochloride salt. MeOH was evaporated and the residue was taken up in dry Et2O to precipitate the salt. After filtration, the salt was dissolved in 2 N NaOH (10 mL) and the free amine was extracted with CHCl3 (4 × 10 mL). The organic phase was dried over Na2SO4 and the pure amine was recovered after evaporation of the solvent. Spectroscopic data for some representative compounds follows. Compound 4b: oil. IR (neat): 3255 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.83 (t, 3 H, J = 6.6 Hz), 1.10-1.57 (m, 12 H), 2.51-2.66 (m, 5 H), 2.85 (dt, 2 H, J = 47.6, 4.7 Hz), 4.90 (dt, 2 H, J = 28.2, 4.7 Hz). Compound 4h: oil. IR (neat): 3255 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.91 (t, 3 H, J = 7.0 Hz), 1.21-1.78 (m, 10 H), 2.54-2.66 (m, 5 H), 3.47 (t, 2 H, J = 6.2 Hz), 4.50 (s, 2 H), 7.18-7.38 (m, 5 H). Compound 4n: mp 52 °C. IR(nujol): 3300 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.88 (t, 6 H, J = 6.6 Hz), 1.11-1.61 (m, 32 H), 2.58 (t, 8 H, J = 6.6 Hz). Compound 7b: mp 58 °C. IR (nujol): 3300, 1660 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.87 (t, 3 H, J = 6.7 Hz), 1.21-1.52 (m, 10 H), 1.75-1.91 (m, 1 H), 2.22-2.38 (m, 1 H), 4.46 (dd, 1 H, J = 47.3, 14.6 Hz), 4.68 (dd, 1 H, J = 47.2, 14.6 Hz), 5.17 (dt, 1 H, J = 10.7, 3.1 Hz), 6.65 (d, 1 H, J = 8.5 Hz), 7.73-7.58 (m, 2 H), 7.63-7.69 (m, 1 H), 7.88-7.91 (m, 2 H). Compound 7n: mp 106 °C. IR (nujol): 3300, 1665 cm-1. 1H NMR (300 MHz, CDCl3): δ = 0.85 (t, 6 H, J = 6.6 Hz), 1.10-1.55 (m, 20 H), 1.60-1.91 (m, 4 H), 1.95-2.25 (m, 8 H), 5.26 (dt, 1 H, J = 10.6, 3.6 Hz), 4.68 (dd, 1 H, J = 47.2, 14.6 Hz), 5.17 (dt, 1 H, J = 10.7, 3.1 Hz), 6.50 (dd, 1 H, J = 10.6, 7.7 Hz), 7.50-7.71 (m, 3 H), 7.82-7.93 (m, 2H).