References
1a
Salaün J. In The
Chemistry of the Cyclopropyl Group, Rearrangements Involving
the Cyclopropyl Group
Rappoport Z.
Wiley;
New
York:
1987.
p.809-878
1b
Salaün J.
Top. Curr. Chem.
1988,
144:
1 ; and references cited therein
1c
Carbocyclic
Three- and Four-membered Ring systems In, Houben-Weyl Methods of Organic Chemistry
Vol.
E 17a-f:
de Meijere A.
Thieme;
Stuttgart:
1997. and
references cited therein
2a
Schnaubelt J.
Ullmann A.
Reissig H.-U.
Synlett
1995,
1223
2b
Ulmann A.
Reissig H.-U.
Rademacher O.
Eur. J.
Org. Chem.
1998,
2541
2c
Palia PK.
Reissig H.-U.
Synlett
2001,
33
3a
Stolle A.
Ollivier J.
Piras PP.
Salaün J.
de Meijere A.
J. Am. Chem. Soc.
1992,
114:
4051
3b
Ollivier J.
Dorizon P.
Piras PP.
de Meijere A.
Salaün J.
Inorg. Chim.
Acta
1994,
222:
37
3c
Salaün J.
Russian J. Org. Chem.
1997,
33:
742
4a
Ollivier J.
Girard N.
Salaün J.
Synlett
1999,
1539
4b
Paschetta V.
Cordero FM.
Paugam R.
Ollivier J.
Salaün J.
Synlett
2001,
1233
5a
Chevtchouk T.
Ollivier J.
Salaün J.
Tetrahedron: Asymmetry
1997,
8:
1005
5b
Chevtchouk T.
Ollivier J.
Salaün J.
Tetrahedron
: Asymmetry
1997,
8:
1011
5c
Stolle A.
Becker H.
Salaün J.
de Meijere A.
Tetrahedron Lett.
1994,
35:
3517
5d
Stolle A.
Becker H.
Salaün J.
de Meijere A.
Tetrahedron Lett.
1994,
35:
3521
5e
Atlan V.
Racouchot S.
Rubin M.
Bremer C.
Ollivier J.
de Meijere A.
Salaün J.
Tetrahedron: Asymmetry
1998,
9:
1131
5f
Estieu K.
Paugam R.
Ollivier J.
Salaün J.
Cordero FM.
Goti A.
Brandi A.
J.
Org. Chem.
1997,
62:
8276
5g
Ferrara M.
Cordero FM.
Goti A.
Brandi A.
Estieu K.
Paugam R.
Ollivier J.
Salaün J.
Eur. J. Org. Chem.
1999,
2725
5h
Pisaneschi F.
Cordero FM.
Goti A.
Paugam R.
Ollivier J.
Brandi A.
Salaün J.
Tetrahedron:
Asymmetry
2000,
11:
897
5i
Cordero FM.
Pisaneschi F.
Goti A.
Ollivier J.
Salaün J.
Brandi A.
J. Am. Chem.
Soc.
2000,
122:
8075
5j
Delogu G.
Salaün J.
de Candia C.
Fabbri D.
Piras PP.
Ollivier J.
Synthesis
2002,
2271
6
Salaün J.
Conia JM.
Tetrahedron Lett.
1972,
2849
7
Denis JM.
Girard C.
Conia JM.
Synthesis
1972,
549
8
Salaün J.
Chem.
Rev.
1983,
83:
619
9
Salaün J.
Chem.
Rev.
1989,
89:
1247
10a
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Pritcyckaja JS.
Zh. Org. Khim.
1989,
25:
2245
10b
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Synthesis
1991,
234
10c
Kulinkovich OG.
Sviridov SV.
Vasilevskii DA.
Savchenko AI.
Pritytskaya TS.
Zh. Org. Khim.
1991,
27:
294
10d
Kulinkovich OG.
de Meijere A.
Chem.
Rev.
2000,
100:
2789 ;
and references cited therein
10e
Kulinkovich OG.
Pure Appl. Chem.
2000,
72:
1715 ; and references cited therein
11
Kozyrkov Y.
Pukin A.
Kulinkovich OG.
Ollivier J.
Salaün J.
Tetrahedron
Lett.
2000,
41:
6399
12
Sylvestre I.
Ollivier J.
Salaün J.
Tetrahedron
Lett.
2001,
42:
4991
13a
Racouchot S.
Ollivier J.
Salaün J.
Synlett
2000,
1729
13b
Racouchot S.
Sylvestre I.
Ollivier J.
Kozyrkov Y.-Y.
Pukin A.
Kulinkovich OG.
Salaün J.
Eur. J. Org. Chem.
2002,
2160
14
Chan TH.
Acc.
Chem. Res.
1977,
10:
442
15
Brandi A.
Goti A.
Chem. Rev.
1998,
98:
589
16
Fleming I.
Dunoges J.
Smithers R.
Org.
React.
1989,
37:
57
17 The cyclopropanol 2a (R1 = H)
was previously isolated as 3,5-dinitrobenzoate from the alkylation-cyclization
of ethyl 3-bromopropionate by Me3SiCH2MgBr/SmI2,
see: Fukuzawa S.
Furuya H.
Tsuchimoto T.
Tetrahedron
1996,
52:
1953
18a
Dicker IB.
J. Org. Chem.
1993,
51:
2324
18b In this article (ref.) the J(threo) > J(erythro) relationship for the H2H3 coupling
constants, was erroneously based on the consideration of stronger
intramolecular hydrogen bonds in the threo comparatively
to the erythro adducts, see: House HO.
Crumrine DS.
Teranishi AY.
Olmstead HD.
J. Am. Chem. Soc.
1973,
95:
3310
18c However, there are
no intramolecular hydrogen bond in the O-silylated diastereoisomers 6a,b and 7a,b. The coupling
constants of erythro-
6a [J(H2H3) = 10.7
Hz] and of threo
-7a [J(H2H3) = 10.4
Hz] were carefully measured by peak pickings.
19
Colvin EW. In Silicon Reagents in Organic Synthesis
Academic
Press;
London/New York:
1988.
p.101
To a solution of 4 g (11 mmol)
of the 1:1 mixture of ethyl 3-phenyl-2-(trimethylsilyl)-3-(trimethylsilyloxy)propionate erythro
-6a and threo-
7a in
15 mL of THF containing 0.62 g (2.2 mmol; 0.2 equiv) of Ti(i-PrO)4 was added dropwise
a 2.54 M solution of ethylmagnesium bromide (11 mL, 27 mmmol; 2.5
equiv) in diethyl ether within 4 h. The reacting mixture was cooled
to 0 °C (iced-water bath), then diluted with diethyl ether
and hydrolyzed with 10 mL of aq NH4Cl. After filtration
through celite, the separated organic layer was washed with brine,
dried on Na2SO4 and concentrated in vacuo.
Flash chromatography of the residue (eluant: pentane/diethyl
ether 9:1) gave two products:
20a 1-[2-Phenyl-1-(trimethylsilyl)-2-(trimethylsilyl-oxy)ethyl]cyclopropanol 9a: 1.94 g (52% yield); 1H
NMR (250 MHz, CDCl3) δ -0.08 (s, 9
H), 0.71 (d, J = 4.95 Hz, 1 H),
0.25-0.88 (m, 4 H), 3.24 (s, 1 H), 5.33 (d, J = 4.95 Hz, 1 H), 7.19-7.33
(m, 5 H); 13C NMR (66 MHz, CDCl3): δ 0.21, 0.28,
13.27, 15.62, 46.13, 58.92, 78.75, 126, 126.9, 127.9, 144.4; IR
3463, 3379, 2974, 2949 cm-1; MS m/z (EI) 322 (2) [M+],
231 (42), 179 (31), 147 (17), 75 (36), 73 (100), 45 (16); MS m/z (CI with NH3)
340 (0.1), 252 (17), 251 (61), 250 (100), 233 (40), 232 (44), 231
(74) 217 (18), 179 (21), 160 (21), 155 (15), 144 (26), 1433 (100).
20b 1-(2-Hydroxy-2-phenyl-1-trimethylsilylethyl)cyclo-propanol 9a′: (various amounts 5-10%);
white solid: mp 107 °C; 1H NMR (250
MHz, CDCl3) δ -0.07 (s, 9 H), 0.76
(s, 1 H), 0.07-0.97 (m, 4 H), 2.58 (s, 1 H), 3.29 (s, 1
H), 5.44 (s, 1 H), 7.24-7.35 (m, 5 H); 13C
NMR (66 MHz, CDCl3) δ 0.32, 13.41, 16.02, 44.86,
59.97, 77.97, 125.17, 126.91, 128.09, 144.41; IR: 3468, 2955, 2898
cm-1; MS m/z (EI)
231 (33), 159 (33), 145 (16), 131 (33), 115 (12), 103 (16), 79 (27),
77 (44), 75 (93), 73 (100), 79 (27), 45 (26); MS m/z (CI
with NH3) 251 (19), 250 (81) [M+],
231 (10), 161 (16), 160 (13), 144 (13), 143 (100) 131 (8); Exact
mass M+ 250.1377 (calcd for C14H22SiO2 250.1389).
21 Base-induced Peterson olefination
of cyclopropanols 9a and 11a led
to ring-opened derivatives (see ref. 1).
22 To a stirred solution of 340 mg (1
mmol) of cyclopropanol 9a in 5 mL of methanol
at r.t. was added two drops of chlorotrimethylsilane. The reaction
was complete within 2 h, as monitored by TLC. Then the solvent was
removed in vacuo; flash chromatography of the residue (eluant: pentane/diethyl
ether 9:1) gave 128 mg (76% yield) of 1-(Z)-styryl cyclopropanol 12. 1H NMR (250 MHz,
CDCl3) δ 0.71-1.32 (m, 4 H), 2.16 (s,
1 H), 5.26 (d, J = 13 Hz, 1
H), 6.53 (d, J = 13 Hz, 1 H),
7.32-7.55 (m, 5 H); MS m/z (EI)
160 (41) [M+], 159 (74), 145
(54), 131 (68), 127 (36), 115 (43), 103 (63), 91 (33), 77 (100),
51 (52); MS m/z (CI with NH3)
178 (100), 161 (22), 160 (17), 159 (14), 143 (18), 131 (13).
23
Salaün J.
Ollivier J.
Nouv. J. Chem.
1981,
5:
587
24
Ollivier J.
PhD Thesis
Université de
Paris-Sud;
Orsay France:
1986.
25
Colvin EW. In Silicon Reagents in Organic Synthesis
Academic
Press;
New York:
1988.
p.65-69
26 X-ray crystallographic data of the
diol 9a′, will be published in Zeitschrift fuer Kristallographie.
27 Molecular mechanics calculations
(using a MM+ force field) and semi-empirical
ZINDO calculations have been performed with the Hyperchem software
(version 5.1). The Ti-O and Ti-C bond lengths and the Ti-bond angles
were in accord with reported RX data for titanium complexes. See: Gais HJ.
Volhardt J.
Linder HJ.
Paulus H.
Angew. Chem.,
Int. Ed. Engl.
1988,
27:
1541