Subscribe to RSS
DOI: 10.1055/s-2003-39900
3-Arylpropanoate Esters through the Palladium-Catalyzed Reaction of Aryl Halides with Acrolein Diethyl Acetal
Publication History
Publication Date:
11 June 2003 (online)
Abstract
The reaction of aryl halides with acrolein diethyl acetal in the presence of Pd(OAc)2, n-Bu3N, and n-Bu4NCl in DMF at 90 °C affords ethyl 3-arylpropanoates. A variety of functional groups are tolerated in the aryl halides, including ether, aldehyde, ketone, ester, nitrile, and nitro groups. ortho-Substituents do not hamper the reaction. 3-Arylpropanoate esters were isolated in good to excellent yields with many neutral, electron-rich and electron-poor aryl iodides and electron-poor aryl bromide. Neutral and electron-rich aryl bromides gave the desired ester in moderate yields.
Key words
palladium - alkenes - esters - aryl halides - Heck reaction
- 1
Zebovitz TC.Heck RF. J. Org. Chem. 1977, 42: 3907 - 2
Battistuzzi G.Cacchi S.Fabrizi G. Org. Lett. 2003, 5: 777 - For related syntheses of α,β-unsaturated aldehydes based on the palladium-catalyzed reaction of aryl halides with a three carbon partner, see:
-
3a
Patel BA.Kim J.-I.Bender DD.Kao L.-C.Heck RF. J. Org. Chem. 1981, 46: 1061 -
3b
Jeffery TJ. J. Chem. Soc., Chem. Commun. 1984, 1287 -
3c
Unroe MR.Reinhardt BA. Synthesis 1987, 981 -
3d
Parrain J.-L.Duchene A.Quintard J.-P. J. Chem. Soc., Perkin Trans. 1 1990, 187 -
3e
Phuan P.-W.Kozlowski MC. Tetrahedron Lett. 2001, 42: 3963 - For some recent references, see for example:
-
4a
Mizojiri R.Urabe H.Sato F. J. Org. Chem. 2000, 65: 6217 -
4b
Shiina I.Imai Y.Suzuki M.Yanagisawa M.Mukaiyama T. Chem. Lett. 2000, 1062 -
4c
Svensson A.Fex T.Kihlberg J. J. Comb. Chem. 2000, 2: 736 -
4d
Takeda T.Takagi Y.Saeki N.Fujiwara T. Tetrahedron Lett. 2000, 41: 8377 -
4e
Fakhri SA.Yousefi BH. Tetrahedron 2000, 56: 8301 -
4f
Busch-Petersen J.Corey EJ. Tetrahedron Lett. 2000, 41: 2515 -
4g
Bulman P.Philip C.McKenzie MJ.Allin SM.Buckle DR. Tetrahedron 2000, 56: 9683 -
4h
Yang D.Wong M.-K.Yan Z. J. Org. Chem. 2000, 65: 4179 -
4i
Rahim MdA.Sasaki H.Saito J.Fujiwara T.Takeda T. Chem. Commun. 2001, 625 -
4j
Hess S.Dolker M.Haferburg D.Kertscher HP.Matysik F.-M.Ortwein J.Teubert U.Zimmermann W.Eger K. Pharmazie 2001, 56: 306 -
4k
Pouysegu L.Avellan A.-V.Quideau S. J. Org. Chem. 2002, 67: 3425 -
4l
Matsubara K.Iura T.Maki T.Nagashima H. J. Org. Chem. 2002, 67: 4985 -
5a
Brown TH.Blakemore RC.Durant GJ.Emmett JC.Ganellin CR.Parsons ME.Rawlings DA.Walker TF. Eur J. Med. Chem. 1988, 23: 53 -
5b
Misra RN.Brown BR.Han W.-C.Harris DN.Hedberg A.Webb ML.Steven EH. J. Med. Chem. 1991, 34: 2882 -
5c
Dickinson RP.Dack KN.Tute MS. Bioorg. Med. Chem. Lett. 1996, 6: 1691 -
5d
Nesloney CL.Kelly JW. J. Org. Chem. 1996, 61: 3127 -
5e
Molina P.Fresneda PM.Sanz MA. J. Org. Chem. 1999, 64: 2540 -
5f
Meyers MJ.Sun J.Carlson KE.Katzenellenbogen BS. Bioorg. Med. Chem. Lett. 1998, 8: 3589 -
5g
Katzenellenbogen JA. J. Med. Chem. 1999, 42: 2456 -
5h
Goldman S,Pennock GD,Morkin E, andBahl JJ. inventors; PCT Int. Appl. WO0260389. ; Chem. Abstr. 2002, 137, 150233 - For palladium-catalyzed coupling of aryl halides, see for example:
-
9a Organozinc compounds:
Tamaru Y.Ochiai H.Nakamura T.Yoshida Z. Tetrahedron Lett. 1986, 27: 955 -
9b See also:
Nakamura E.Aoki S.Sekyia K.Oshino H.Kuwajima I. J. Am. Chem. Soc. 1987, 109: 8056 -
9c 1-Tributylstannyl-3,3-diethoxyprop-1-ene:
Parrain J.-L.Duchene A.Quintard J.-P. J. Chem. Soc., Perkin Trans. 1 1990, 187 -
9d Alkyltrifluorosilanes:
Matsuhashi H.Kuroboshi M.Hatanaka Y.Hiyama T. Tetrahedron Lett. 1994, 35: 6507 - 10 For nickel-catalyzed coupling of
alkyl iodides, see for example: Arylzinc compounds:
Giovannini R.Knochel P. J. Am. Chem. Soc. 1998, 120: 11186 - 11 For the nickel-catalyzed reaction
of organic halides with olefins in the presence of zinc, see for
example:
Sustmann R.Hopp P.Holl P. Tetrahedron Lett. 1989, 30: 689 - For electrochemical methods involving aryl halides and transition metal catalysis, see for example:
-
12a
Condon-Gueugnot S.Léonel E.Nédélec J.-Y.Périchon J. J. Org. Chem. 1995, 60: 7684 -
12b
Kurono N.Sugita K.Takasugi S.Tokuda M. Tetrahedron 1999, 55: 6097 -
12c
Gomes P.Gosmini C.Nédélec J.-Y.Périchon J. Tetrahedron Lett. 2002, 43: 5901 - For recent references on the synthesis of 3-aryl propanoate esters via reduction of cinnamate esters, see:
-
13a
Taylor RA.Santora BP.Gagne MR. Org. Lett. 2000, 2: 1781 -
13b
Chauhan M.Boudjouk P. Can. J. Chem. 2000, 78: 1396 -
13c
Couturier M.Andresen BM.Tucker JL.Dube P.Brenek SJ.Negri JT. Tetrahedron Lett. 2001, 42: 2763 -
13d
Vinson SL.Gagne MR. Chem. Commun. 2001, 1130 -
13e
Desai B.Danks TN. Tetrahedron Lett. 2001, 42: 5963 -
13f
Shibata I.Suwa T.Ryu K.Baba A. J. Org. Chem. 2001, 66: 8690 -
13g
Concellon JM.Rodriguez-Solla H. Chem.-Eur. J. 2001, 7: 4266 -
13h
Basu MK.Samajdar S.Becker FF.Banik BK. Synlett 2002, 319 -
13i
Bremeyer NB.Ley SV.Ramarao C.Shirley IM.Smith SC. Synlett 2002, 1843
References
Typical Procedure for the Preparation of Ethyl 3-Arylpropanoates ( 5). To a solution of 2-iodo-4-nitrotoluene (0.132 g, 0.501 mmol), acrolein diethylacetal (0.229 mL, 1.50 mmol), n-Bu4NCl (0.139 g, 0.50 mmol), n-Bu3N (0.238 mL, 1.00 mmol) in 2.0 mL of DMF, Pd(OAc)2 (0.003 g, 0.015 mmol) was added. The mixture was warmed at 90 °C and stirred for 1 h. After cooling, the reaction mixture was diluted with 2 N HCl and extracted with Et2O. The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by chromatography (n-hexane/EtOAc 85/15 v/v) to give 0.109 g of 5z (92% yield) as an oil. IR (KBr): 1733, 1521, 1348 cm-1. 1H NMR (CDCl3): δ = 8.01 (d, J 1 = 2.3 Hz, 1 H), 7.95 (dd, J 1 = 8.3 Hz, J 2 = 2.4 Hz, 1 H), 7.28 (d, J = 8.3 Hz, 1 H), 4.14 (q, J 1 = 7.1 Hz, 2 H), 3.01 (t, J 1 = 7.5 Hz, 2 H), 2.64 (t, J 1 = 7.5 Hz, 2 H), 2.42 (s, 3 H), 1.24 (t, J 1 = 7.1 Hz, 3 H). 13C NMR (CDCl3): δ = 172.3, 146.5, 144.2, 140.3, 131.0, 123.2, 121.4, 60.7, 33.9, 28.0, 19.6, 14.1. MS: m/z (%) = 237 (55) [M+], 192 (70), 191 (53), 164 (78), 150 (100), 91(95). Anal. Calcd for C12H15NO4: C, 70.65; H, 6.37; N, 5.90. Found: C, 70.61; H, 6.34; N, 5.95.
7Compound 6i was prepared according to the ref. [2] , omitting treatment with HCl.
8Diiodobenzene (0.5 mmol), acrolein
diethyl acetal (3 mmol), Pd(OAc)2 (6 mol%), n-Bu3N (2 mmol), n-Bu4NCl (1.5 mmol), DMF (1
mL).
3-[2-(2-Ethoxycarbonyl-ethyl)-phenyl]-propionic
Acid Ethyl Ester (
8a). Oil. IR (neat):
1734 cm-1. 1H NMR (CDCl3): δ = 7.17
(s, 4 H), 4.15 (q, J
1 = 7.1
Hz, 4 H), 2.99 (t, J = 7.7
Hz, 4 H), 2.62 (t, J
1 = 7.7
Hz, 4 H), 1.26 (t, J
1 = 7.1, Hz, 6 H). 13C
NMR (CDCl3): δ = 172.9, 138.4, 129.1,
126.7, 60.6, 35.4, 27.6, 14.3. MS: m/z (%) = 278 (16) [M+],
233 (34), 186 (90), 158 (100), 144 (34), 130 (64), 117 (91). Anal Calcd
for C16H22O4: C, 69.04; H, 7.97.
Found: C, 69.11; H, 7.94.
3-[4-(2-Ethoxycarbonyl-ethyl)-phenyl]-propionic
Acid Ethyl Ester (
8b). Mp 65-66 °C.
IR (KBr): 1725 cm-1. 1H NMR
(CDCl3): δ = 7.13 (s, 4 H), 4.13 (q, J
1 = 7.2
Hz, 4 H), 2.92 (t, J = 8.0
Hz, 4 H), 2.60 (t, J
1 = 8.0
Hz, 4 H), 1.25 (t, J
1 = 7.2, Hz, 6 H). 13C
NMR (CDCl3): δ = 173.0, 138.5, 128.5,
60.5, 36.0, 30.6, 14.3. MS: m/z (%) = 278 (24) [M+], 233
(10), 204 (60), 190 (27), 159 (16), 130 (57), 117 (100). Anal. Calcd
for C16H22O4: C, 69.04; H, 7.97.
Found: C, 69.09; H, 7.93.