Zusammenfassung
Ziel: Die signalverstärkenden Eigenschaften des makromolekularen Kontrastmittels Gadomer in der MR-Angiographie der Koronararterien im Vergleich zu Gd-DTPA zu prüfen. Material und Methoden: Insgesamt wurden 15 MRT-Untersuchungen an Herzen von Schweinen bei 1,5 T mit einer Puls-getriggerten, segmentierten 3D-FLASH-Sequenz jeweils während Atemanhaltens vor und bis zu 30 min nach Injektion des Kontrastmittels durchgeführt. Gadomer wurde in zwei (0,05 und 0,1 mmol Gd/kg), Gd-DTPA in einer Dosierung (0,3 mmol Gd/kg) geprüft (je n = 5 Untersuchungen). Quantitativ wurden für Blut und Myokard die Signal-zu-Rausch (S/R)- und Kontrast-zu-Rausch(K/R)-Werte bestimmt. Qualitativ wurden Bildqualität und Darstellbarkeit der Koronararterien bewertet. Ergebnisse: Gadomer führt im Vergleich zu Gd-DTPA zu einem länger anhaltenden, gegenüber der Nativuntersuchung signifikant erhöhten K/R-Anstieg zwischen Blut und Myokard (Gd-DTPA: nur unmittelbar nach Injektion, Gadomer, 0,05 mmol Gd/kg: bis 5 min; 0,1 mmol Gd/kg: bis 10 min nach Injektion). Die qualitative Auswertung zeigt, dass die Darstellung der Koronararterien und der Seitenäste mit Gadomer ohne Unterschied zwischen den beiden Dosierungen signifikant besser ist als mit Gd-DTPA. Schlussfolgerung: Gadomer ist ein geeignetes Kontrastmittel für die MR-Angiographie der Koronararterien, wobei die Dosis von 0,1 mmol Gd/kg gegenüber 0,05 mmol Gd/kg Vorteile durch ein verlängertes Bildgebungsfenster aufweist.
Abstract
Aim: To investigate the signal-enhancing effects of the macromolecular contrast medium Gadomer in MR angiography of the coronary arteries compared to Gd-DTPA. Material and Methods: A total of 15 MRI examinations of the heart were performed in pigs at 1.5 T using a pulse-triggered, segmented 3D FLASH sequence with data acquisition during breathhold before and up to 30 min after contrast medium injection. Gadomer was investigated at two doses (0.05 and 0.1 mmol Gd/kg), Gd-DTPA at one (0.3 mmol Gd/kg) (n = 5 examinations per dose). Standard sequences without magnetization preparation were supplemented by sequences with magnetization saturation applied before data acquisition before and immediately after contrast medium injection. Analysis comprised quantitative determination of blood and myocardium signal to noise (S/N) and contrast to noise (C/N) and qualitative assessment of several parameters of image quality and coronary artery visualization. Results: Gadomer leads to a significant C/N increase between blood and myocardium compared to the unenhanced examination and the increase is longer-lasting than that produced by Gd-DTPA (Gd-DTPA: only directly after injection; Gadomer: up to 5 min post injection at 0.05 mmol Gd/kg, up to 10 min at 0.1 mmol Gd/kg). The qualitative evaluation shows that visualization of the coronary arteries and branch vessels is significantly better with Gadomer at both doses than with Gd-DTPA. Magnetization saturation increases the C/N in combination with Gd-DTPA and at the higher dose of Gadomer with the latter producing a higher increase in C/N values. Conclusion: Gadomer is a suitable contrast medium for MR angiography of the coronary arteries with the dose of 0.1 mmol Gd/kg being superior to 0.05 mmol Gd/kg due to a longer imaging window.
Key words
MR angiography - coronary arteries - contrast medium - gadolinium - experimental studies
Literatur
1
Li D, Dolan R P, Walovitch R C, Lauffer R B.
Three-dimensional MRI of coronary arteries using an intravascular contrast agent.
Magn Reson Med.
1998;
39
1014-1018
2
Hofman M B, Henson R E, Kovacs S J, Fischer S E, Lauffer R B, Adzamli K, De Becker J, Wickline S A, Lorenz C H.
Blood pool agent strongly improves 3D magnetic resonance coronary angiography using an inversion pre-pulse.
Magn Reson Med.
1999;
41
360-367
3
Kellar K E, Fujii D K, Gunther W H, Briley-Saebo K, Spiller M, Koenig S H.
„NC100150”, a preparation of iron oxide nanoparticles ideal for positive-contrast MR angiography.
Magma.
1999;
8
207-213
4
Knollmann F D, Bock J C, Ruatenberg K, Beier J, Ebert W, Felix R.
Differences in predominant enhancement mechanisms of superparamagnetic iron oxide and ultrasmall superparamagnetic iron oxide for contrast-enhanced portal magnetic resonance angiography. Preliminary results of an animal study original investigation.
Invest Radiol.
1998;
33
637-643
5
Tombach B, Reimer P, Mahler M, Ebert W, Pering C, Heindel W.
First-pass and equilibrium phase MRA following intravenous bolus injection of SH U 555 C: Phase I clinical trial in elderly volunteeers with risk factors for arterial vascular disease.
Acad Radiol.
2002;
9
(Suppl 2)
S425-427
6
Taupitz M, Schnorr J, Abramjuk C, Wagner S, Pilgrimm H, Hunigen H, Hamm B.
New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits.
J Magn Reson Imaging.
2000;
12
905-911
7
Wagner S, Schnorr J, Pilgrimm H, Taupitz M.
Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization.
Invest Radiol.
2002;
37
167-177
8
Lauffer R B, Parmelee D J, Dunham S U, Quellet H S, Dolan R P, Witte S, McMurry T J, Walovitch R C.
MS-325: albumin-targeted contrast agent for MR angiography.
Radiology.
1998;
207
529-538
9
Huber M E, Paetsch I, Schnackenburg B, Bornstedt A, Nagel E, Fleck E, Boesiger P, Maggioni F, Cavagna F M, Stuber M.
Performance of a new gadolinium-based intravascular contrast agent in free-breathing inversion-recovery 3D coronary MRA.
Magn Reson Med.
2003;
49
115-121
10
Schmiedl U, Brasch R C, Ogan M D, Moseley M E.
Albumin labeled with Gd-DTPA. An intravascular contrast-enhancing agent for magnetic resonance blood pool and perfusion imaging.
Acta Radiol Suppl.
1990;
374
99-102
11
Bogdanov A A, Weissleder R, Frank H W, Bogdanova A V, Nossif N, Schaffer B K, Tsai E, Papisov M I, Brady T J.
A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies.
Radiology.
1993;
187
701-706
12
Bock J C, Pison U, Kaufmann F, Felix R.
Gd-DTPA-polylysine-enhanced pulmonary time-of-flight MR angiography.
J Magn Reson Imaging.
1994;
4
473-476
13
Helbich T H, Gossman A, Mareski P A, Raduchel B, Roberts T P, Shames D M, Muhler M, Turetschek K, Brasch R C.
A new polysaccharide macromolecular contrast agent for MR imaging: biodistribution and imaging characteristics.
J Magn Reson Imaging.
2000;
11
694-701
14
Port M, Carot C, Raynal I, Idee J M, Dencausse A, Lancelot E, Meyer D, Bonnemain B, Latrou J.
Physicochemical and biological evaluation of P792, a rapid-clearance blood-pool agent for magnetic resonance imaging.
Invest Radiol.
2001;
36
445-454
15
Misselwitz B, Schmitt-Willich H, Ebert W, Frenzel T, Weinmann H J.
Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent.
Magma.
2001;
12
128-134
16
Wielopolski P A, van Geuns R J, de Feyter P J, Oudkerk M.
Breath-hold coronary MR angiography with volume-targeted imaging.
Radiology.
1998;
209
209-219
17
Sommer T, Lewalter T, Bierhoff E, Pakos E, von Smekal A, Pauleit D, Hofer U, Luderitz B, Schild H.
MRT-Diagnostik der rechtsventrikulären Dysplasie.
Fortschr Röntgenstr.
1998;
169
609-615
18
Earls J P, Ho V B, Foo T K, Castillo E, Flamm S D.
Cardiac MRI: recent progress and continued challenges.
J Magn Reson Imaging.
2002;
16
111-127
19
Kivelitz D E, Enzweiler C N, Wiese T H, Lembcke A, Borges A, Zytowski M, Taupitz M, Hamm B.
Bestimmung linksventrikulärer Funktionsparameter und der Myokardmasse: Vergleich von MRT und EBT.
Fortschr Röntgenstr.
2000;
172
244-250
20
Sandstede J, Machann H, Machann W, Beer M, Johnson T, Harre K, Pabst T, Kenn W, Hahn D.
Interindividuelle Variabilität der regionalen myokardialen Wandfunktionsanalyse nach Herzinfarkt und Revaskularisierung.
Fortschr Röntgenstr.
2002;
174
1147-1153
21
Sommer T, Hofer U, Omran H, Schild H.
Stress-Cine-MRT zur Primärdiagnostik der koronaren Herzkrankheit.
Fortschr Röntgenstr.
2002;
174
605-613
22
Kivelitz D E, Taupitz M, Hamm B.
Bildgebung nach Myokardinfarkt: Was leistet die Magnetresonanztomographie.
Fortschr Röntgenstr.
1999;
171
349-358
23
Huber M E, Hengesbach D, Botnar R M, Kissinger K V, Boesiger P, Manning W J, Stuber M.
Motion artifact reduction and vessel enhancement for free-breathing navigator-gated coronary MRA using 3D k-space reordering.
Magn Reson Med.
2001;
45
645-652
24
Li D, Carr J C, Shea S M, Zheng J, Deshpande V S, Wielopolski P A, Finn J P.
Coronary arteries: magnetization-prepared contrast-enhanced three-dimensional volume-targeted breath-hold MR angiography.
Radiology.
2001;
219
270-277
25
Stuber M, Danias P G, Botnar R M, Sodickson D K, Kissinger K V, Manning W J.
Superiority of prone position in free-breathing 3D coronary MRA in patients with coronary disease.
J Magn Reson Imaging.
2001;
13
185-191
26
Sommer T, Hofer U, Hackenbroch M, Meyer C, Flacke S, Schmiedel A, Schmitz C, Thiemann K, Omran H, Schild H.
Hochauflösende 3D-MR-Koronarangiographie in Echt-Zeit-Navigatortechnik: Ergebnisse aus 107 Patientenuntersuchungen.
Fortschr Röntgenstr.
2002;
174
459-466
27
Stuber M, Botnar R M, Danias P G, McConnell M V, Kissinger K V, Yucel E K, Manning W J.
Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography.
J Magn Reson Imaging.
1999;
10
790-799
28
Klein C, Nagel E, Schnackenburg B, Bornstedt A, Schalla S, Hoffmann V, Lehning A, Fleck E.
The intravascular contrast agent Clariscan (NC 100150 injection) for 3D MR coronary angiography in patients with coronary artery disease.
Magma.
2000;
11
65-67
29
Li D, Zheng J, Weinmann H J.
Contrast-enhanced MR imaging of coronary arteries: comparison of intra- and extravascular contrast agents in swine.
Radiology.
2001;
218
670-678
30
Taupitz M, Schnorr J, Wagner S, Kivelitz D, Rogalla P, Claassen G, Dewey M, Robert P, Corot C, Hamm B.
Coronary magnetic resonance angiography: experimental evaluation of the new rapid clearance blood pool contrast medium P792.
Magn Reson Med.
2001;
46
932-938
31
Taupitz M, Schnorr J, Wagner S, Abramjuk C, Pilgrimm H, Kivelitz D, Schink T, Hansel J, Laub G, Hunigen H, Hamm B.
Coronary MR angiography: experimental results with a monomer-stabilized blood pool contrast medium.
Radiology.
2002;
222
120-126
32
Allkemper T, Bremer C, Matuszewski L, Ebert W, Reimer P.
Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits.
Radiology.
2002;
223
432-438
33
Port M, Corot C, Rousseaux O, Raynal I, Devoldere L, Idee J M, Dencausse A, Le Greneur S, Simonot C, Meyer D.
P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results.
Magma.
2001;
12
121-127
Dr. med. vet. Jörg Schnorr
Institut für Radiologie, Charité, Medizinische Fakultät der Humboldt-Universität zu Berlin
Schumannstraße 20/21
10098 Berlin
Phone: + 49-30-450539044
Fax: + 49-30-450539901
Email: joerg.schnorr@charite.de