Pharmacopsychiatry 2003; 36(3): 113-120
DOI: 10.1055/s-2003-39986
Original Paper
© Georg Thieme Verlag Stuttgart · New York

The Lateral Spread of Epileptiform Discharges in Rat Neocortical Slices: Effect of Focal Phencyclidine Application

A. Gorji1 , D. Scheller2 , E-J. Speckmann1, 3
  • 1Institut für Physiologie, Universität Münster, 48149 Münster, Germany
  • 2Janssen-Research Foundation, 41470 Neuss, Germany
  • 3Institut für Experimentelle Epilepsieforschung, Universität Münster, 48149 Münster, Germany
Further Information

Publication History

Received: 17.6.2002 Revised: 22.7.2002

Accepted: 11.9.2002

Publication Date:
13 June 2003 (online)

In vitro and in vivo brain slice techniques were used to examine phencyclidine (PCP) effects on the lateral propagation of epileptiform field potentials (EFP) across adjacent areas of rat frontal neocortex. Epileptiform activity was induced by perfusing slices with Mg2+-free artificial cerebrospinal fluid. Simultaneous field potential recordings of EFP were obtained from four microelectrodes placed 2-3 mm apart across coronal slices in the third layer. PCP, applied focally between recording sites, blocked rapid propagation across treated areas and resulted in the emergence of spatially separate, independent pacemakers. The characteristics of paroxysmal depolarization shifts did not change significantly by the blockade of lateral propagation of EFP. The same asynchronized pattern of EFP conduction was observed after local application of the N-methyl-D-aspartate (NMDA)-receptor antagonist DL-2-amino-5-phosphono-valeric acid. Local administration of haloperidol as well as NMDA before PCP application reversibly prevented appearance of multiple pacemakers. Focal application of dopamine produced an abnormal pattern of lateral conduction of EFP in 50 % of tested slices. Pacemaker failure as an indicator of functional impairment of cortical integration is the proposed mechanism for developing of schizophrenia-like psychosis associated with epilepsy.

Abbreviations

APV:DL-2-amino-5-phosphono-valeric acid

EEG:electroencephalogram

EFP:epileptiform field potentials

NMDA:N-methyl-D-aspartate

PCP:phencyclidine

SLPE:Schizophrenialike psychosis associated with epilepsy

References

  • 1 Adachi N, Onuma T, Nishiwaki S, Murauchi S, Akanuma N, Ishida S, Takei N. Inter-ictal and post-ictal psychoses in frontal lobe epilepsy: a retrospective comparison with psychoses in temporal lobe epilepsy.  Seizure. 2000;  9 328-335
  • 2 Akbarian S, Sucher N J, Bradley D. et al . Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics.  J Neurosci.. 1996;  16 19-30
  • 3 Allaoua H, Chicheportiche R. Anaesthetic properties of phencyclidine (PCP) and analogues may be related to their interaction with Na+ channels.  Eur J Pharmacol. 1989;  163 327-335
  • 4 Arvanov V L, Liang X, Schwartz J, Grossman S, Wang R Y. Clozapine and haloperidol modulate N-methyl-D-aspartate- and non-N-methyl-D-aspartate receptor-mediated neurotransmission in rat prefrontal cortical neurons in vitro.  J Pharmacol Exp Ther. 1997;  283 226-234
  • 5 Avoli M, Louvel J, Pumain R, Olivier A. Seizure-like discharges induced by lowering [Mg2+]o in the human epileptogenic neocortex maintained in vitro.  Brain Res. 1987;  417 199-203
  • 6 Briellmann R S, Kalnins R M, Hopwood M .J, Ward C, Berkovic S F, Jackson G D. TLE patients with postictal psychosis: mesial dysplasia and anterior hippocampal preservation.  Neurology. 2000;  55 1027-1030
  • 7 Coan E J, Collingridge G L. Effects of phencyclidine, SKF 10,047 and related psychotomimetic agents on N-methyl-D-aspartate receptor mediated synaptic responses in rat hippocampal slices.  Br J Pharmacol. 1987;  91 547-556
  • 8 Contreras C M, Dorantes M E, Mexicano G, Guzman-Flores C. Lateralization of spike and wave complexes produced by hallucinogenic compounds in the cat.  Exp Neurol. 1986;  92 467-478
  • 9 Cook C E, Brine D R, Jeffcoat A R, Hill J M, Wall M E, Perez-Reyes M, Di Guiseppi S R. Phencyclidine disposition after intravenous and oral doses.  Clin Pharmacol Ther. 1982;  31 625-634
  • 10 Cook C E, Brine D R, Quin G D, Perez-Reyes M, Di Guiseppi S R. Phencyclidine and phenylcyclohexene disposition after smoking phencyclidine.  Clin Pharmacol Ther.. 1982;  31 635-641
  • 11 Diehl L W. Schizophrenic syndromes in epilepsies.  Psychopathology. 1989;  22 65-140
  • 12 Flor-Henry P. Psychosis and temporal lobe epilepsy.  Epilepsia. 1969;  10 363-395
  • 13 Friston K J, Frith C D. Schizophrenia: a disconnection syndrome?.  Clin Neurosci. 1995;  3 89-97
  • 14 Friston K J. The disconnection hypothesis.  Schizophr Res. 1998;  30 115-125
  • 15 Gao W J, Krimer L S, Goldman-Rakic P S. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits.  Proc Natl Acad Sci USA.. 2001;  98 295-300
  • 16 Gonzalez-Pal S, Faure A, Quintana J, Fabelo R, Dominguez M E, Gomez-Plasencia R, Sanchez M J. Frontal lobe dysfunction in patients with epilepsy and chronic psychosis.  Rev Neurol. 1999;  28 219-223
  • 17 Gorji A, Khaleghi Ghadiri M. History of epilepsy in Medieval Iranian medicine.  Neurosci Biobehav Rev. 2001;  25 455-461
  • 18 Gorji A, Scheld H H, Speckmann E -J. Epileptogenic effect of cyclosporine in guinea pig hippocampal slices.  Neuroscience. 2003;  115(4) 993-997
  • 19 Greene R. Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia.  Hippocampus. 2001;  11 569-577
  • 20 Grunze H C, Rainnie D G, Hasselmo M E, Barkai E, Hearn E F, McCarley R W, Greene R W. NMDA-dependent modulation of CA1 local circuit inhibition.  J Neurosci. 1996;  16 2034-2043
  • 21 Hemmingsen R, Madsen A, Glenthoj B, Rubin P. Cortical brain dysfunction in early schizophrenia: secondary pathogenetic hierarchy of neuroplasticity, psychopathology and social impairment.  Acta Psychiatr Scand. 1999;  395 S80-88
  • 22 Hondo H, Yonezawa Y, Nakahara T, Nakamura K, Hirano M, Uchimura H, Tashiro N. Effect of phencyclidine on dopamine release in the rat prefrontal cortex; an in vivo microdialysis study.  Brain Res.. 1994;  633 337-342
  • 23 Hwa G G, Avoli M, Oliver A, Villemure J G. Bicuculline-induced epileptogenesis in the human neocortex maintained in vitro.  Exp Brain Res. 1991;  83 329-339
  • 24 Jardemark K E, Liang X, Arvanov V, Wang R Y. Subchronic treatment with either clozapine, olanzapine or haloperidol produces a hyposensitive response of the rat cortical cells to N-methyl-D-aspartate.  Neuroscience. 2000;  100 1-9
  • 25 Javitt D C, Zukin S R. Recent advances in the phencyclidine model of schizophrenia.  Am J Psychiatry. 1991;  148 1301-1308
  • 26 Jentsch J D, Taylor J R. Impaired inhibition of conditioned responses produced by subchronic administration of phencyclidine to rats.  Neuropsychopharmacology. 2001;  24 66-74
  • 27 Jentsch J D, Tran A, Le D, Youngren K D, Roth R H. Subchronic phencyclidine administration reduces mesoprefrontal dopamine utilization and impairs prefrontal cortical-dependent cognition in the rat.  Neuropsychopharmacology. 1997;  17 92-99
  • 28 Jentsch J D, Tran A, Taylor J R, Roth R H. Prefrontal cortical involvement in phencyclidine-induced activation of the mesolimbic dopamine system: behavioral and neurochemical evidence.  Psychopharmacology (Berl). 1998;  138 89-95
  • 29 Koh D S, Geiger J R, Jonas P, Sakmann B. Ca(2+)-permeable AMPA and NMDA receptor channels in basket cells of rat hippocampal dentate gyrus.  J Physiol. 1995;  485 383-402
  • 30 Kumlien E, Hartvig P, Valind S, Oye I, Tedroff J, Langstrom B. NMDA-receptor activity visualized with (S)-[N-methyl-11C]ketamine and positron emission tomography in patients with medial temporal lobe epilepsy.  Epilepsia. 1999;  40 30-37
  • 31 Logsdail S J, Toone B K. Post-ictal psychoses. A clinical and phenomenological description.  Br J Psychiatry. 1988;  152 246-252
  • 32 Matsuzaki M, Dowling K C. Phencyclidine (PCP): effects of acute and chronic administration on EEG activities in the rhesus monkey.  Electroencephalogr Clin Neurophysiol. 1985;  60 356-366
  • 33 Mountcastle V B. The columnar organization of the neocortex.  Brain. 1997;  120 701-722
  • 34 Najm I M, Ying Z, Babb T ,. et al . Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia.  Epilepsia. 2000;  41 971-976
  • 35 O’Shaughnessy C T, Lodge D. N-methyl-D-aspartate receptor-mediated increase in intracellular calcium is reduced by ketamine and phencyclidine.  Eur J Pharmacol. 1988;  153 201-209
  • 36 Popoli P, Pezzola A, Benedetti M, Scotti de Carolis A. Verapamil and flunarizine inhibit phencyclidine-induced effects: an EEG and behavioural study in rats.  Neuropharmacology. 1992;  31 1185-1191
  • 37 Proksch J W, Gentry W B, Owens S M. The effect of rate of drug administration on the extent and time course of phencyclidine distribution in rat brain, testis, and serum.  Drug Metab Dispos.. 2000;  28 742-747
  • 38 Rappolt RT S r, Gay G R, Farris R D. Phencyclidine (PCP) intoxication: diagnosis in stages and algorithms of treatment.  Clin Toxicol. 1980;  16 509-529
  • 39 Sachdev P. Schizophrenia-like psychosis and epilepsy: the status of the association.  Am J Psychiatry. 1998;  155 325-336
  • 40 Savard G, Andermann F, Olivier A, Remillard G M. Postictal psychosis after partial complex seizures: a multiple case study.  Epilepsia. 1991;  32 225-231
  • 41 Seeck M, Alberque C, Spinelli L, Michel C M, Jallon P. de Tribolet N, Landis T. Left temporal rhythmic electrical activity: a correlate for psychosis? A case report.  J Neural Transm. 1999;  106 787-794
  • 42 Seeman P. Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2 receptors, clozapine occupies D4.  Neuropsychopharmacology. 1992;  7 261-284
  • 43 Selemon L D, Rajkowska G, Goldman-Rakic P S. Abnormally high neuronal density in the schizophrenic cortex. A morphometric analysis of prefrontal area 9 and occipital area 17.  Arch Gen Psychiatry. 1995;  52 805-818
  • 44 So N K, Savard G, Andermann F, Olivier A, Quesney L F. Acute postictal psychosis: a stereo EEG study.  Epilepsia. 1990;  31 188-193
  • 45 Speckmann E J, Kohling R, Lucke A ,. et al . Microcutting of living brain slices by a pulsed ultrafine water jet which allows simultaneous electrophysiological recordings (micromingotome).  J Neurosci Methods. 1998;  82 53-58
  • 46 Takeda Y, Inoue Y, Tottori T, Mihara T. Acute psychosis during intracranial EEG monitoring: close relationship between psychotic symptoms and discharges in amygdala.  Epilepsia. 2001;  42 719-724
  • 47 Taylor D C. Factors influencing the occurrence of schizophrenia-like psychosis in patients with temporal lobe epilepsy.  Psychol Med. 1975;  5 249-254
  • 48 Telfeian A E, Connors B W. Epileptiform propagation patterns mediated by NMDA and non-NMDA receptors in rat neocortex.  Epilepsia. 1999;  40 1499-1506
  • 49 Vincent J P, Bidard J N, Lazdunski M, Romey G, Tourneur Y. Vignon J. Identification and properties of phencyclidine-binding sites in nervous tissues.  Fed Proc. 1983;  42 2570-2573
  • 50 Vollenweider F X. Advances and pathophysiological models of hallucinogenic drug actions in humans: a preamble to schizophrenia research.  Pharmacopsychiatry. 1998;  Suppl 2 92-103
  • 51 Wang X J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory.  J Neurosci. 1999;  19 9587-9603
  • 52 Wong B Y, Prince D A. The lateral spread of ictal discharges in neocortical brain slices.  Epilepsy Res. 1990;  7 29-39
  • 53 Wong R K, Miles R, Traub R D. Local circuit interactions in synchronization of cortical neurones.  J Exp Biol. 1984;  112 169-178

A. Gorji, M.D.

Institut für Physiologie

Universität Münster

Robert Koch-Strasse 27a

D-48149 Münster

Germany

Phone: +49-251-8355564

Fax: +49-251-8355551

Email: gorjial@uni-muenster.de