Subscribe to RSS
DOI: 10.1055/s-2003-40187
Study of Substrate Dependence on the Diastereoselectivity of the Ruthenium(II) Porphyrin Catalyzed Tandem Formation and 1,3-Dipolar Cycloaddition Reactions of Carbonyl Ylides
Publication History
Publication Date:
24 June 2003 (online)
Abstract
The effect of substrate substitution on reaction selectivity for the ruthenium(II) porphyrin catalyzed tandem carbonyl ylide formation/1,3-dipolar cycloaddition reaction of a variety of alkyl and aryl substituted α-diazo ketones 1 with π-unsaturated compounds was examined. The results suggested the diastereoselectivity of the reaction to be highly substrate dependant. Similar yields and cis/trans selectivities have also been achieved for the analogous reactions with rhodium(II,II) dimer as catalyst.
Key words
carbonyl ylide formation - 1,3-dipolar cycloaddition - metallocarbenoids - rhodium(II,II) dimers - ruthenium(II) porphyrins
-
1a
Padwa A.Straub CS. J. Org. Chem. 2003, 68: 227 -
1b
Wender PA. Chem. Rev. 1996, 96: 1 -
1c
Tietze LF.Beifuss U. Angew. Chem., Int. Ed. Engl. 1993, 32: 131 -
1d
Ho TL. Tandem Organic Reactions John Wiley and Sons; New York: 1992. -
1e
Moore WH.Decker OHW. Chem. Rev. 1986, 86: 821 -
1f
1,3-Dipolar
Cycloaddition Chemistry
Padwa A. Wiley-Interscience; New York: 1984. -
2a
Hodgson DM.Stupple PA.Pierard FYTM.Labande AH.Johnstone C. Chem.-Eur. J. 2001, 7: 4465 -
2b
Hodgson DM.Pierard FYTM.Stupple PA. Chem. Soc. Rev. 2001, 30: 50 -
2c
Doyle MP.McKervey MA.Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds John Wiley and Sons; New York: 1998. Chap. 7. p.397 -
2d
Kitagaki S.Anada M.Kataoka O.Matsuno K.Umeda C.Watanabe N.Hashimoto S.-I. J. Am. Chem. Soc. 1999, 121: 1417 -
2e
Padwa A.Weingarten MD. Chem. Rev. 1996, 96: 223 -
3a
Ibata T.Jitsuhiro K.Tsubokura Y. Bull. Chem. Soc. Jpn. 1981, 54: 240 -
3b
Ibata T.Jitsuhiro K. Bull. Chem. Soc. Jpn. 1979, 52: 3582 - For recent examples see:
-
4a
Muthusamy S.Babu SA.Gunanathan C.Ganguly B.Suresh E.Dastidar P. J. Org. Chem. 2002, 67: 8019 -
4b
Jiang B.Zhang X.Luo Z. Org. Lett. 2002, 4: 2453 -
4c
Hodgson DM.Avery TD.Donohue AC. Org. Lett. 2002, 4: 1809 -
4d
Wood JL.Thompson BD.Yusuff N.Pflum DA.Matthäus MSP. J. Am. Chem. Soc. 2001, 123: 2097 -
4e
Chiu P.Chen B.Cheng K.-F. Org. Lett. 2001, 3: 1721 -
4f
Pirrung MC.Kaliappan KP. Org. Lett. 2000, 2: 353 -
5a For
a review see:
Simonneaux G.Le Maux P. Coord. Chem. Rev. 2002, 228: 43 -
5b For selected examples see:
Zhang J.-L.Che C.-M. Org. Lett. 2002, 4: 1911 -
5c
Zheng S.-L.Yu W.-Y.Che C.-M. Org. Lett. 2002, 4: 889 -
5d
Che C.-M.Huang J.-S.Lee F.-W.Li Y.Lai T.-S.Kwong H.-L.Teng P.-F.Lee W.-S.Lo W.-C.Peng S.-M.Zhou Z.-Y. J. Am. Chem. Soc. 2001, 123: 4119 -
5e
Li Y.Huang J.-S.Zhou Z.-Y.Che C.-M. J. Am. Chem. Soc. 2001, 123: 4843 -
5f
Galardon E.Le Maux P.Simonneaux G. Tetrahedron 2000, 56: 615 -
5g
Gross Z.Galili N.Simkhovich L. Tetrahedron Lett. 1999, 40: 1571 -
5h
Frauenkron M.Berkessel A. Tetrahedron Lett. 1997, 38: 7175 -
5i
Galardon E.Le Maux P.Simonneaux G. Chem. Commun. 1997, 927 -
5j
Lo W.-C.Che C.-M.Cheng K.-F.Mak TC.-W. Chem. Commun. 1997, 1205 - For examples see:
-
6a
Klose A.Solari E.Floriani C.Geremia S.Randaccio L. Angew. Chem. Int. Ed. 1998, 37: 148 -
6b
Galardon E.Le Maux P.Toupet L.Simonneaux G. Organometallics 1998, 17: 565 -
7a
Zhang R.Yu W.-Y.Sun H.-Z.Liu W.-S.Che C.-M. Chem.-Eur. J. 2002, 8: 2495 -
7c
Zhang R.Yu W.-Y.Wong K.-Y.Che C.-M. J. Org. Chem. 2001, 66: 8145 -
7d
Yu X.-Q.Huang J.-S.Zhou X.-G.Che C.-M. Org. Lett. 2000, 2: 2233 -
7b
Liang J.-L.Huang J.-S.Yu X.-Q.Zhu N.-Y.Che C.-M. Chem.-Eur. J. 2002, 8: 1563 -
8a
Liang J.-L.Yuan S.-X.Huang J.-S.Yu W.-Y.Che C.-M. Angew. Chem. Int. Ed. 2002, 41: 3465 -
8b
Zhang R.Yu W.-Y.Lai T.-S.Che C.-M. Chem. Commun. 1999, 409 -
8c
Au S.-M.Huang J.-S.Yu W.-Y.Fung W.-H.Che C.-M. J. Am. Chem. Soc. 1999, 121: 9120 -
8d
Lai T.-S.Zhang R.Cheung K.-K.Kwong H.-L.Che C.-M. Chem. Commun. 1998, 1583 -
9a
Gross Z.Ini S. Org. Lett. 1999, 1: 2077 -
9b
Berkessel A.Frauenkron M. J. Chem. Soc., Perkin Trans. 1 1997, 2265 -
9c
Groves JT.Roman JS. J. Am. Chem. Soc. 1995, 117: 5594 -
9d
Higuchi T.Ohtake H.Hirobe M. Tetrahedron Lett. 1989, 30: 6545 -
9e
Groves JT.Quinn R. J. Am. Chem. Soc. 1985, 107: 5790 - 10 For preliminary communication see:
Zhou C.-Y.Yu W.-Y.Che C.-M. Org. Lett. 2002, 4: 3235 -
13a
Kennedy M.McKervey MA.Maguire AR.Tuladhar SM.Twohig MF. J. Chem. Soc., Perkin Trans 1 1990, 1047 -
13b
Manitto P.Monti D.Speranza G. J. Org. Chem. 1995, 60: 484 -
16a
Falvo RE.Mink LM. J. Chem. Educ. 1999, 76: 237 -
16b
Li Z.-Y.Huang J.-S.Che C.-M.Chang C.-K. Inorg. Chem. 1992, 31: 2670 -
16c
Adler AD.Longo FR.Finarelli JD.Goldmacher J.Assour J.Korsakoff L. J. Org. Chem. 1967, 32: 476 -
16d
Rillema DP.Nagle JK.Barringer LF.Meyer TJ. J. Am. Chem. Soc. 1981, 103: 56
References
4-[(2,4-Dinitro-phenyl)-hydrazono]-2-ethyl-1-phenyl-8-oxa-bicyclo[3.2.1]oct-6-ene-6,7-Dicarboxylic
Acid Dimethyl Ester (3) (Scheme
[3]
)
Yellow
crystals; mp 230-232 °C.
IR
(KBr): 3326, 3082, 2963, 1757, 1718, 1624, 1583, 1495, 1435, 1335,
1259, 1200, 1140, 1005 cm-1,
1H
NMR (400 MHz, CDCl3): δ = 11.2
(s, 1 H), 9.14 (d, 1 H, J = 2.5 Hz), 8.36 (dd,
1 H, J = 9.6,
2.5 Hz), 8.06 (d, 1H, J = 9.6
Hz), 7.32-7.42 (m, 5 H), 5.57 (s, 1 H), 3.77 (s, 3 H), 3.70
(s, 3 H), 2.90 (d, 1 H, J = 16.4 Hz), 2.84 (dd,
1 H, J = 16.4,
6.5 Hz), 2.64 (m, 1 H), 1.32-1.38 (m, 1 H), 1.20-1.28
(m, 1 H), 0.93 (t, 3 H, J = 7.4 Hz).
13C
NMR (100 MHz, CDCl3): δ = 164.6
(s), 161.0 (s), 149.2 (s), 149.0 (s), 145.1 (s), 138.4 (s), 136.7
(s), 133.2 (s), 130.1 (d), 129.7 (s), 128.6 (d), 128.2 (d), 124.9
(d), 123.2 (d), 116.6 (d), 93.5 (s), 83.3 (d), 52.6 (q), 52.5 (q),
38.9 (d), 23.6 (t), 22.7 (t), 12.3 (q).
MS (EI): m/z (%) = 524
(M+, 19), 492(100), 464(39), 432(19), 387(17),
260(23).
HRMS (EI): m/z calcd for C25H24N4O9,
524.1543; found, 524.1547.
CCDC 207843-207847 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC 12 Union Road Cambridge CB2 1EZ UK; fax:+44(1223)336033; e-mail: deposit@ccdc.cam.ac.uk).
14
2-(2-Oxo-propyl)-3,4-dihydro-2
H
-azulen-1-one(5)
Yield: 28%; colorless
oil.
IR(neat): 3028, 2922, 1711, 1697, 1435, 1267, 1140
cm-1.
1H
NMR (400 MHz, CDCl3): δ = 6.77
(d, 1 H, J = 11.1
Hz), 6.55 (dd, 1 H, J = 11.1,
5.7 Hz), 6.17 (dd, 1 H, J = 9.9,
5.7 Hz), 5.39-5.46 (m, 1 H), 3.00-3.10 (m, 2 H),
2.79-2.92 (m, 3 H), 2.52 (dd, 1 H, J = 18.0,
9.7 Hz), 2.38(d, 1 H, J = 19.6 Hz),
2.18 (s, 3 H).
13C NMR (100
MHz, CDCl3): δ = 206.7
(s), 206.3 (s), 164.7 (s), 136.1 (s), 131.0 (d), 129.0 (d), 122.5
(d), 121.0 (d), 44.6 (t),43.8 (d), 37.5 (t), 31.1 (t), 29.9 (q).
MS
(EI): m/z (%) = 202
(M+, 91), 159(100), 145(41).
HRMS
(EI): m/z calcd
for C13H14O2, 202.0994; found, 202.0997.
For spectroscopic evidence of the
generation of the ruthenium-carbenoid intermediate, see ref.
[5j]
and below:
To a solution
of [RuII(TTP)(CO)] (50mg, 0.063mmol)
in benzene (2mL) was added a solution of methyl 2-diazo-3,6-dioxoheptanoate(18.6mg,
0.094mmol) in benzene (1mL). The reaction mixture was stirred at
40 °C for 1 h, cooled to r.t. and concentrated under reduced
pressure. The residue was washed with hexane and a small amount
of MeOH to give the product as deep red solid (37mg, 61%)
(Scheme
[4]
).
1H
NMR (400MHz, CDCl3): δ = 8.55
(s, 8 H), 7.99 (dd, 8 H, J = 10.0, 3.6 Hz), 7.49
(d, 8 H, J = 7.9
Hz), 2.67 (s, 12 H), 2.27 (s, 3 H), 1.6 (s, 3 H), 1.04 (t, 2 H, J = 6.9 Hz), -0.97
(t, 2 H, J = 6.9
Hz).
13C NMR (100MHz, CDCl3): δ = 283.8
(Ru=C).
MS (FAB): m/z (%) = 940 [M + H]+,
770.