Abstract
The incorporation of metal binding sites into peptides is an
elegant method for the stabilization of peptide microstructures. In
order to do this, first amino acid derivatives have to be synthesized
which bear metal ligand moieties like bipyridines, phosphanes, or
catechols. By standard peptide coupling reactions those building
blocks can be incorporated into peptide strands. Examples from the
literature show that, depending on the system, different peptide
structures are stabilized by addition of metal ions to appropriate
artificial peptides. Thus, conformationally fixed α-helix-, β-sheet-
or various turn/loop-motifs can be obtained.
1 Introduction
2 Peptide/Metal-Ligand Hybrids
2.1 Pyridine-Based (and Related) Ligands
2.1.1 Preparation of Bipyridine Amino Acids
2.1.2 Preparation of Peptide Derivatives and their Metal Complexes
2.2 Phosphane-Based Ligands
2.3 Catechol-Based Ligands
2.3.1 Amino Acid-Bridged Dicatechol Ligands
2.3.2 Peptide-Bridged Dicatechol Ligands
3 Miscellaneous
4 Conclusion
Key words
bioorganic chemistry - peptides - ligands - coupling - complexes
References
1
Fersht A.
Structure and Mechanism in Protein Science
W. H.
Freeman;
New York:
1998.
2
Voyer N. In Topics
in Current Chemistry
Vol. 184:
Schmidtchen FP.
Springer Verlag;
Berlin:
1997.
3
Lombardi A.
Summa CM.
Geremia S.
Randaccio L.
Pavone V.
DeGrado WF.
Proc. Natl. Acad.
Sci. U.S.A.
2000,
97:
6298
4
Berg JM.
J.
Biol. Chem.
1990,
265:
6513
5
Walkup GK.
Imperiali B.
J. Am. Chem. Soc.
1996,
118:
3053
6
Porter JR.
Traverse JF.
Hoveyda AH.
Snapper ML.
J.
Am. Chem. Soc.
2001,
123:
984
7
Porter JR.
Traverse JF.
Hoveyda AH.
Snapper ML.
J.
Am. Chem. Soc.
2001,
123:
10409
8
Fletcher NC.
J.
Chem. Soc., Perkin Trans. 1
2002,
1831
9
Kaes C.
Katz A.
Hosseini MW.
Chem.
Rev.
2000,
100:
3553
10
Platt G.
Chung C.-W.
Searle MS.
Chem.
Commun.
2001,
1162
11
Kelso MJ.
Hoang HN.
Appleton TG.
Fairlie DP.
J. Am.
Chem. Soc.
2000,
122:
10488
12
Gretchikhine AB.
Ogawa MY.
J. Am. Chem. Soc.
1996,
118:
1543
13
Khatyr A.
Ziessel R.
Org. Lett.
2001,
3:
1857
14
Imperiali B.
Fisher SL.
J. Org. Chem.
1992,
57:
757
15
Imperiali B.
Prins TJ.
Fisher SL.
J. Org. Chem.
1993,
58:
1613
16
Torrado A.
Imperiali B.
J. Org. Chem.
1996,
61:
8940
17
O" Donnel MJ.
Bennett WD.
Wu S.
J. Am. Chem. Soc.
1989,
11:
2353
18
Cheng RP.
Fisher SL.
Imperiali B.
J.
Am. Chem. Soc.
1996,
118:
11349
19
Mazaleyrat J.-P.
Wright K.
Wakselman M.
Formaggio F.
Crisma M.
Toniolo C.
Eur. J. Org. Chem.
2001,
1821
20
Newkome GR.
Gross J.
Patri AK.
J.
Org. Chem.
1997,
62:
3013
21
Bishop BM.
McCafferty DG.
Erickson BW.
Tetrahedron
2000,
56:
4629
22
Merrifield RB.
J.
Am. Chem. Soc.
1963,
85:
2149
23
Jones J.
Synthese
von Aminosäuren und Peptiden
VCH;
Weinheim:
1995.
24
Schneider JP.
Kelly JW.
J. Am. Chem. Soc.
1995,
117:
2533
25
Imperiali B.
Fisher SL.
J. Am. Chem. Soc.
1991,
113:
8527
26
Lieberman M.
Sasaki T.
J. Am. Chem. Soc.
1991,
113:
1470
27
Ghadiri MR.
Soares C.
Choi C.
J.
Am. Chem. Soc.
1992,
114:
4000
28
Lieberman M.
Tabet M.
Sasaki T.
J.
Am. Chem. Soc.
1994,
116:
5035
29
Ghadiri MR.
Case MA.
Angew. Chem., Int. Ed.
Engl.
1993,
32:
1594 ; Angew. Chem. 1993, 105, 1663
30
Ghadiri MR.
Soares C.
Choi C.
J.
Am. Chem. Soc.
1992,
114:
825
31
Mutz MW.
McLendon GL.
Wishart JF.
Gaillard ER.
Corin AF.
Proc. Natl. Acad. Sci. U.S.A.
1996,
93:
9521
32
Koide T.
Yuguchi M.
Kawakita M.
Konno H.
J. Am. Chem. Soc.
2002,
124:
9388
33
Palmer CR.
Sloan LS.
Adrian JC.
Cuenoud B.
Paolella DN.
Schepartz A.
J.
Am. Chem. Soc.
1995,
117:
8899
34
Cuenoud B.
Schepartz A.
Science
1993,
259:
510
35
Gilbertson SR.
Chen G.
McLoughlin M.
J.
Am. Chem. Soc.
1994,
116:
4481
36
Horner L.
Hoffmann H.
Beck P.
Chem.
Ber.
1958,
91:
1583
37
Gilbertson SR.
Wang X.
Hoge GS.
Klug CA.
Schaefer J.
Organometallics
1996,
15:
4678
38
Gilbertson SR.
Collibee SE.
Agarkov A.
J.
Am. Chem. Soc.
2000,
122:
6522
39
Raymond KN.
Pure.
Appl. Chem.
1994,
66:
773
40
Pattus F.
Abdallah MA.
J. Chin. Chem. Soc.
2000,
47:
1
41
Loomis LD.
Raymond KN.
Inorg. Chem.
1991,
30:
906
42
Albrecht M.
Napp M.
Schneider M.
Synthesis
2001,
468
43 Albrecht, M.; Wagner, M. unpublished.
44 Albrecht M., Nolting R. unpublished.
45
Albrecht M.
Napp M.
Schneider M.
Weis P.
Fröhlich R.
Chem.-Eur.
J.
2001,
7:
3966
46
Albrecht M.
Napp M.
Schneider M.
Weis P.
Fröhlich R.
Chem.
Commun.
2001,
409
47
Ramachandran GN.
Sasiskharan V.
Adv. Protein Chem.
1968,
23:
283
48
Albrecht M.
Spieß O.
Schneider M.
Synthesis
2002,
126
49
Albrecht M.
Spieß O.
Schneider M.
Weis P.
Chem. Commun.
2002,
786
50
Morita H.
Yun YS.
Takeya K.
Itokawa H.
Tetrahedron Lett.
1994,
35:
9593
51
Morita H.
Yun YS.
Takeya K.
Itokawa H.
Yamada K.
Tetrahedron
1995,
51:
6003
52
Morita H.
Yun YS.
Takeya K.
Itokawa H.
Shiro M.
Tetrahedron
1995,
51:
5987
53
Sonnet P.
Petit L.
Marty D.
Guillon J.
Rochette J.
Brion J.-D.
Tetrahedron Lett.
2001,
42:
1681
54 Albrecht, M.; Stortz, P.; Weis, P. Supramol. Chem. 2003, accepted
for publication.
55 Albrecht, M.; Stortz, P.; Weis, P. Synlett 2003,
accepted for publication.
56
Millington CR.
Quarrell R.
Lowe G.
Tetrahedron
Lett.
1998,
39:
7201
57
Rana TM.
Ban M.
Hearst JE.
Tetrahedron
Lett.
2001,
33:
4521
58
Ruan F.
Chen Y.
Hopkins PB.
J.
Am. Chem. Soc.
1990,
112:
9403
59
Maricic S.
Frejd T.
J. Org. Chem.
2002,
67:
7600
60
Zelikovich L.
Libman J.
Shanzer A.
Nature
(London)
1995,
374:
790
61
Leininger S.
Olenyuk B.
Stang PJ.
Chem.
Rev.
2000,
100:
853
62
Caulder D.
Raymond KN.
J. Chem. Soc., Dalton
Trans.
1999,
1185