RSS-Feed abonnieren
DOI: 10.1055/s-2003-40318
Nitric Oxide and Inflammatory Response in Simulated Extracorporeal Circulation
Publikationsverlauf
Received: January 5, 2003
Publikationsdatum:
30. Juni 2003 (online)
Abstract
Background: Simulated extracorporeal circulation (SECC) induces inflammatory reaction. Nitric oxide (NO) has pro-and anti-inflammatory properties. NO role in SECC-related inflammatory response is unclear. The aim of this study was to clarify if NO affects the foreign-surface induced leukocyte activation during SECC. Methods: Human blood was circulated through SECC during 3 hours. Control group C was ventilated with oxygen/air mixture and the study group with oxygen/air mixture and NO. Leukocyte activation was measured as serum levels of myeloperoxidase (MPO), human neutrophil lipocalin (HNL), lactoferrin (LF), interleukin-1-beta (IL-1β) and interleukin-10 (IL-10). Oxygen free radical production capacity was evaluated with chemiluminescence. NO metabolites nitrite/nitrate were estimated in serum. Results: Leukocyte granule release increased over time. Addition of NO significantly increased MPO, HNL and LF release. The average difference increased with SECC duration. NO addition did not significantly affect measured interleukins concentration or oxygen free radical production capacity. NO metabolites increased significantly in the NO circuits. Conclusions: Results indicate that NO addition during SECC is pro-inflammatory and has no effect on oxygen free radical production and interleukin release.
Key words
Extracorporeal circulation - inflammatory reaction - NO - oxygen free radicals - interleukins
References
- 1 Edmunds H L. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg. 1998; 6615 312-316
-
2 Bauer P, Rozsa Z, Granger D N.
Nitric oxide and the gastrointestinal circulation. In: Kadowitz PJ, McNamara DB, eds Nitric oxide and the regulation of the peripheral circulation. Boston, Basel, Berlin; Birkhäuser 2000: 259-269 -
3 Ignarro L J.
Nitric oxide in the regulation of blood flow: A historical overview. In: Kadowitz PJ, McNamara DB, eds Nitric oxide and the regulation of the peripheral circulation. Boston, Basel, Berlin; Birkhäuser 2000: 1-12 - 4 Lahtinen M, Borowiec J, Venge P, Henze A, Stiernström H. Nitric oxide increases leukocyte granule release during simulated extracorporeal circulation. Thor Cardiov Surg. 2000; 48 151-156
- 5 Shinde U A, Mehta A A, Goyal R K. Nitric oxide: a molecule of the millenium. Indian J Exp Biol. 2000; 38 (3) 201-210
- 6 World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. J Postgrad Med 2002 48 3 206-208
- 7 Wilkinson P. Chemotaxis and inflammation. Edinburgh, London, Melbourne, New York; Churchill Livingstone 1974
- 8 Hayashi Y, Sawa Y, Nishimura M. et al . Nitric oxide gas infusor to the oxygenator enhances the biocompatibility of heparin coated extracorporeal bypass circuits. ASAIO Journal. 1998; 44 M456-M461
- 9 Grisham M. et al . Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol. 1996; 268 237-246
- 10 Nielsen H, Reimert C, Pedersen A. et al . Time-dependent, spontaneous release of white cell- and platelet derived bioactive substances from stored human blood. Transfusion. 1996; 36 960-965
- 11 Weisbach V, Wanke C, Zingsem J. et al . Cytokine generation in whole blood, leukocyte-depleted and temporarily warmed red blood cell concentrates. Vox Sang. 1999; 76 100-106
- 12 Kooy N, Royall J, Ye Y, Kelly D, Beckman J. Evidence for in vivo peroxynitrite production in human lung injury. Am J Respir Crit Care Med. 1995; 151 1250-1254
- 13 Asimakopoulos G. Mechanism of the systemic inflammatory response. Perfusion. 1999; 14 (4) 269-277
- 14 Borowiec J W, Lahtinen M, Venge P, Henze A, Stiernström H. Inflammatory response during simulated extracorporeal circulation with addition of nitric oxide. J Cardiovasc Surg. 2000; 41 207-213
- 15 Mellgren K, Friberg L, Mellgren G, Hedner T, Wennmalm Å, Wadenvik H. Nitric oxide in the sweep gas reduces platelet activation during experimental perfusion. Ann Thorac Surg. 1996; 61 1856-1864
- 16 Konishi R, Shimizu R, Firestone L. et al . Nitric oxide prevents human platelet adhesion to fiber membranes in whole blood. ASAIO J. 1996; 42 M850-M853
- 17 Tabet J Y, Lopes M E, Champagne S, Su J B, Merlet P, Hittinger L. Inflammation, cytokines and anti-inflammatory therapies in heart failure. Arch Mal Coeur Vaiss. 2002; 95 (3) 204-212
- 18 McBride W T, Armstrong M A, Crockard A D, McMurray T J, Rea J M. Cytokine balance and immunosuppressive changes at cardiac surgery: contrasting results between patients and isolated CPB circuits. Br J Anesth. 1995; 75 724-733
- 19 Hanada T, Yoshimura A. Regulation of cytokine signaling and inflammation. Cytokine Growth Factor Rev. 2002; 13 (4 - 5) 413-421
- 20 Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukine 10. J Exp Med. 1991; 174 1549-1555
Jan W. Borowiec
Department of Cardiothoracic Surgery, Uppsala University Hospital
75185 Uppsala, Sweden
Telefon: +46 18 611 4055
Fax: +46 18 611 3926
eMail: jan.borowiec@surgsci.uu.se