Subscribe to RSS
DOI: 10.1055/s-2003-40347
A Highly Efficient and Stereoselective Synthesis of Polyhydroxylated Pyrrolidines via Regioselective Asymmetric Aminohydroxylation (RAA) and Intramolecular Amidomercuration Reactions
Publication History
Publication Date:
30 June 2003 (online)
Abstract
A new synthetic strategy, which allows a complete stereochemical control of all four chiral centers of two important polyhydroxylated pyrrolidines 8 and 9, is described. The cornerstone of the present strategy is a successful implementation of the regioselective asymmetric aminohydroxylation (RAA) reaction of the designed achiral olefin 1 and the intramolecular stereoselective amidomercuration reaction of the δ-alkenylamide 4, which were used for the introduction of the vicinal amino alcohol functionality and for the construction of the five membered ring in the targets respectively.
Key words
carbohydrate - glycosidase inhibitor - polyhydroxylated pyrrolidine - regioselective asymmetric aminohydroxylation reaction - intramolecular amidomercuration reaction
-
1a
Winchester B.Fleet GWJ. Glycobiology 1992, 2: 199 -
1b
Kennedy JF.White CA. Bioactive Carbohydrates in Chemistry, Biochemistry, and Biology Halsted Press; New York: 1983. -
2a
Rhinehart BL.Robinson KM.Payne AJ.Wheatly ME.Fisher JL.Liu PS.Cheng W. Life Sci. 1987, 41: 2325 -
2b
Anzeveno PB.Creemer LJ.Daniel JK.King CHR.Liu PS. J. Org. Chem. 1989, 54: 2539 -
2c
Johnson PS.Lebovitz HE.Coniff RF.Simonson DC.Raskin P.Munera CL. J. Clin. Endocrinol. Metab. 1998, 83: 1515 - 3
Ostrander GK.Scribner NK.Rohrschneider LR. Cancer Res. 1988, 48: 1091 - 4
Bitonti AJ,Sjoersma A, andMcCann PP. inventors; Eur. Patent App., EP 423728. -
5a
Fleet GWJ.Karpas A.Dwek RA.Fellows LE.Tyms AS.Peturrson S.Namgoong SK.Ramsden NG.Smith PW.Son JC.Wilson F.Witty DR.Jacob GS.Rademacher TW. FEBS Lett. 1988, 237: 128 -
5b
Gruters RA.Neefjes JJ.Tersmette M.de Goede REY.Tulp A.Huisman HG.Miedema F.Ploegh HL. Nature (London) 1987, 330: 74 -
6a
Sinnott ML. Chem. Rev. 1990, 90: 1171 -
6b
Heightman TD.Vasella AT. Angew. Chem. Int. Ed. 1999, 38: 750 -
6c
Zechel D.Withers SG. Acc. Chem. Res. 2000, 33: 11 -
7a
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
7b
Asano N.Kuroi H.Ikeda K.Kizu H.Kameda Y.Kato A.Adachi I.Watson AA.Nash RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1 -
7c
Iminosugars
as Glycosidase Inhibitors: Nojirimycin and Beyond
Stutz AE. Wiley-VCH; Weinheim: 1999. -
7d
Carbohydrate Mimetics.
Concepts and Methods
Chapleur Y. Wiley-VCH; Weinheim: 1998. -
7e
Winchester B.Fleet GWJ. Glycobiology 1992, 2: 199 -
7f
Ganem B. Acc. Chem. Res. 1996, 29: 340 -
7g
Bols M. Acc. Chem. Res. 1998, 31: 1 -
7h
Sears P.Wong C.-H. Angew. Chem. Int. Ed. 1999, 38: 2301 -
8a
Behr J.-B.Erard A.Guillerm G. Eur. J. Org. Chem. 2002, 1256 -
8b
Denmark SE.Cottell JJ. J. Org. Chem. 2001, 66: 4276 -
8c
White JD.Hrnciar P. J. Org. Chem. 2000, 65: 9129 -
8d
Denmark SE.Hurd AR. J. Org. Chem. 2000, 65: 2875 -
8e
Denmark SE.Herbert B. J. Org. Chem. 2000, 65: 2887 -
9a
Toyao A.Tamura O.Takagi H.Ishibashi H. Synlett 2003, 35 -
9b
Yamashita T.Yasuda K.Kizu H.Kameda Y.Watson AA.Nash RJ.Fleet GWH.Asano N. J. Nat. Prod. 2002, 65: 1875 -
10a
Shi M.Satoh Y.Makihara T.Masaki Y. Tetrahedron: Asymmetry 1995, 6: 2109 -
10b
Masaki Y.Oda H.Kazuta K.Usai A.Itoh A.Xu F. Tetrahedron Lett. 1992, 33: 5089 -
10c
Gouverneur V.Ghosez L. Tetrahedron Lett. 1991, 32: 5349 -
10d
Gouverneur V.Ghosez L. Tetrahedron: Asymmetry 1990, 1: 363 -
10e
Ikegami S.Uchiyama H.Hayama T.Katsuki T.Yamaguchi M. Tetrahedron 1988, 44: 5333 -
10f For a review of C2-symmetric
catalysts and ligands, see:
Whitesell JK. Chem. Rev. 1989, 89: 1581 - 11 For a review for the formation of
pyrrolidine rings, see:
Pichon M.Figadere B. Tetrahedron: Asymmetry 1996, 7: 927 - For more recent literatures for the synthesis and biological activity of I, see:
-
12a
Donohoe TJ.Headley CE.Cousins RPC.Cowley A. Org. Lett. 2003, 7: 999 -
12b
Dondoni A.Giovannini PP.Perrone D. J. Org. Chem. 2002, 67: 7203 -
12c
Cubero I.Plaza Lopez-Espinosa MT.Robles Diaz R.Franco Montalban F. Carbohydr. Res. 2001, 330: 401 -
12d
Saotome C.Kanie Y.Kanie O.Wong C.-H. Bioorg. Med. Chem. 2000, 8: 2249 -
12e
Colobert F.Tito A.Khiar N.Denni D.Medina MA.Martin-Lomas M.Ruano JG.Solladie G. J. Org. Chem. 1998, 63: 8918 -
12f
Takayama S.Martin R.Wu J.Laslo K.Siuzdak G.Wong C.-H. J. Am. Chem. Soc. 1997, 119: 8146 -
12g
Huwe CM.Blechert S. Synthesis 1997, 61 -
12h
McCort I.Dureault A.Depezay J.-C. Tetrahedron Lett. 1996, 37: 7717 -
12i
Asano N.Oseki K.Kizu H.Matsui K. J. Med. Chem. 1994, 37: 3701 -
12j
Zou W.Szarek WA. Carbohydr. Res. 1993, 242: 311 -
12k
Masaki Y.Oda H.Kazuta K.Usai A.Itoh A.Xu F. Tetrahedron Lett. 1992, 33: 5089 -
12l
Kajimoto T.Chen L.Liu K.-C.Wong C.-H. J. Am. Chem. Soc. 1991, 113: 6678 -
12m
Liu K.-C.Kajimoto T.Chen L.Wong C.-H. J. Org. Chem. 1991, 56: 6280 -
12n
Huang RR.Straub JA.Whitesides GM. J. Org. Chem. 1991, 56: 3849 -
12o
Dureault A.Portal M.Depezay JC. Synlett 1991, 225 -
12p
Reitz AB.Baxter EW. Tetrahedron Lett. 1990, 31: 6777 -
12q
Shing TKM. Tetrahedron 1988, 44: 7261 -
12r
Fleet GWJ.Smith PW. Tetrahedron 1987, 43: 971 -
12s
Card PJ.Hitz WD. J. Org. Chem. 1985, 50: 891 - For more recent literatures for the synthesis and biological activity of II, see:
-
13a
Sifferlen T.Defoin A.Streith J.Nouen DL.Tarnus C.Dosbaa I.Foglietti M.-J. Tetrahedron 2000, 56: 971 -
13b
Qiao L.Murray BW.Shimazaki M.Schultz J.Wong C.-H. J. Am. Chem. Soc. 1996, 118: 7653 -
13c
Wang Y.-F.Dumas DP.Wong C.-H. Tetrahedron Lett. 1993, 34: 403 -
13d
Dumas DP.Kajimoto T.Liu K.-C.Wong C.-H.Berlowitz DB.Danishefsky SJ. Bioorg. Med. Chem. Lett. 1992, 2: 33 -
13e
Wong C.-H.Dumas DP.Ishikawa Y.Koseki K.Danishefsky SJ.Weston RW.Lowe JB. J. Am. Chem. Soc. 1992, 114: 7321 -
13f
Ishikawa Y.Lin YC.Dumas DP.Shen G.-J.Garcia-Junceda E.Williams MA.Bayer R.Ketcham C.Walker LE.Paulson JC.Wong C.-H. J. Am. Chem. Soc. 1992, 114: 9283 -
13g
Liu K.-C.Kajimoto T.Cheng L.Zhong Z.Ichikawa Y.Wong C.-H. J. Org. Chem. 1991, 56: 6280 -
14a
Han H.Cho CW.Janda KD. Chem. Eur. J. 1999, 5: 1565 -
14b
Han H.Yoon J.Janda KD. J. Org. Chem. 1998, 63: 2045 -
14c
Singh OV.Han H. Tetrahedron Lett. 2003, 44: 2387 -
14d
Han H.Yang H. Tetrahedron Lett. 2003, 44: 1567 -
14e For other similar approaches,
see:
Morgan AJ.Masse CE.Panek JS. Org. Lett. 1999, 1: 1949 -
14f Also see:
Chuang C.-C.Vassar V.Ma Z.Geney R.Ojima I. Chirality 2002, 14: 151 -
15a
Takahata H.Takehara H.Ohkubo N.Takefumi M. Tetrahedron: Asymmetry 1990, 1: 561 -
15b
Harding KE.Marman TH.Nam D.-H. Tetrahedron Lett. 1988, 29: 1627 -
15c
Harding KE.Marman TH. J. Org. Chem. 1984, 49: 2838 -
15d
Hill CH.Whitesides GM. J. Am. Chem. Soc. 1974, 96: 870 - 16
Corey EJ.Guzman-Perez A.Noe MC. J. Am. Chem. Soc. 1995, 117: 10805 - 17
Fukuyama T.Laird AA.Hotchkiss LM. Tetrahedron Lett. 1985, 26: 6291
References
The NMR data of 8 and 9 are consistent with those in the literatures (ref. [12j] for 8 and ref. [12m] for 9). For 8, 1H NMR (500 MHz, D2O) δ 3.73-3.77 (m, 2 H), 3.80-3.86 (m, 4 H), 4.20 (d, 2 H, J = 2.0 Hz); 13C NMR (125 MHz, D2O) δ 61.17, 66.58, 78.36. For 9, 1H NMR (500 MHz, D2O) δ 1.27 (d, 3 H, J = 7.0 Hz), 3.75 (dd, 1 H, J = 7.5 Hz, 10.5 Hz), 3.77-3.87 (m, 3 H), 4.06 (d, 1 H, J = 3.5 Hz), 4.26 (d, 1 H, J = 3.5Hz).