Abstract
A new synthetic strategy, which allows a complete stereochemical
control of all four chiral centers of two important polyhydroxylated
pyrrolidines 8 and 9 ,
is described. The cornerstone of the present strategy is a successful
implementation of the regioselective asymmetric aminohydroxylation
(RAA) reaction of the designed achiral olefin 1 and
the intramolecular stereoselective amidomercuration reaction of
the δ-alkenylamide 4 , which were used
for the introduction of the vicinal amino alcohol functionality and
for the construction of the five membered ring in the targets respectively.
Key words
carbohydrate - glycosidase inhibitor - polyhydroxylated pyrrolidine - regioselective asymmetric aminohydroxylation reaction - intramolecular
amidomercuration reaction
References
1a
Winchester B.
Fleet GWJ.
Glycobiology
1992,
2:
199
1b
Kennedy JF.
White CA.
Bioactive Carbohydrates in Chemistry, Biochemistry,
and Biology
Halsted Press;
New
York:
1983.
2a
Rhinehart BL.
Robinson KM.
Payne AJ.
Wheatly ME.
Fisher JL.
Liu PS.
Cheng W.
Life
Sci.
1987,
41:
2325
2b
Anzeveno PB.
Creemer LJ.
Daniel JK.
King CHR.
Liu PS.
J. Org. Chem.
1989,
54:
2539
2c
Johnson PS.
Lebovitz HE.
Coniff RF.
Simonson DC.
Raskin P.
Munera CL.
J.
Clin. Endocrinol. Metab.
1998,
83:
1515
3
Ostrander GK.
Scribner NK.
Rohrschneider LR.
Cancer Res.
1988,
48:
1091
4 Bitonti AJ, Sjoersma A, and McCann PP. inventors; Eur.
Patent App., EP 423728.
5a
Fleet GWJ.
Karpas A.
Dwek RA.
Fellows LE.
Tyms AS.
Peturrson S.
Namgoong SK.
Ramsden NG.
Smith PW.
Son JC.
Wilson F.
Witty DR.
Jacob GS.
Rademacher TW.
FEBS
Lett.
1988,
237:
128
5b
Gruters RA.
Neefjes JJ.
Tersmette M.
de Goede REY.
Tulp A.
Huisman HG.
Miedema F.
Ploegh HL.
Nature
(London)
1987,
330:
74
6a
Sinnott ML.
Chem. Rev.
1990,
90:
1171
6b
Heightman TD.
Vasella AT.
Angew.
Chem. Int. Ed.
1999,
38:
750
6c
Zechel D.
Withers SG.
Acc. Chem. Res.
2000,
33:
11
7a
Watson AA.
Fleet GWJ.
Asano N.
Molyneux RJ.
Nash RJ.
Phytochemistry
2001,
56:
265
7b
Asano N.
Kuroi H.
Ikeda K.
Kizu H.
Kameda Y.
Kato A.
Adachi I.
Watson AA.
Nash RJ.
Fleet GWJ.
Tetrahedron: Asymmetry
2000,
11:
1
7c
Iminosugars
as Glycosidase Inhibitors: Nojirimycin and Beyond
Stutz AE.
Wiley-VCH;
Weinheim:
1999.
7d
Carbohydrate Mimetics.
Concepts and Methods
Chapleur Y.
Wiley-VCH;
Weinheim:
1998.
7e
Winchester B.
Fleet GWJ.
Glycobiology
1992,
2:
199
7f
Ganem B.
Acc.
Chem. Res.
1996,
29:
340
7g
Bols M.
Acc.
Chem. Res.
1998,
31:
1
7h
Sears P.
Wong C.-H.
Angew. Chem. Int. Ed.
1999,
38:
2301
8a
Behr J.-B.
Erard A.
Guillerm G.
Eur. J. Org. Chem.
2002,
1256
8b
Denmark SE.
Cottell JJ.
J.
Org. Chem.
2001,
66:
4276
8c
White JD.
Hrnciar P.
J. Org.
Chem.
2000,
65:
9129
8d
Denmark SE.
Hurd AR.
J.
Org. Chem.
2000,
65:
2875
8e
Denmark SE.
Herbert B.
J. Org.
Chem.
2000,
65:
2887
9a
Toyao A.
Tamura O.
Takagi H.
Ishibashi H.
Synlett
2003,
35
9b
Yamashita T.
Yasuda K.
Kizu H.
Kameda Y.
Watson AA.
Nash RJ.
Fleet GWH.
Asano N.
J. Nat. Prod.
2002,
65:
1875
10a
Shi M.
Satoh Y.
Makihara T.
Masaki Y.
Tetrahedron:
Asymmetry
1995,
6:
2109
10b
Masaki Y.
Oda H.
Kazuta K.
Usai A.
Itoh A.
Xu F.
Tetrahedron Lett.
1992,
33:
5089
10c
Gouverneur V.
Ghosez L.
Tetrahedron Lett.
1991,
32:
5349
10d
Gouverneur V.
Ghosez L.
Tetrahedron: Asymmetry
1990,
1:
363
10e
Ikegami S.
Uchiyama H.
Hayama T.
Katsuki T.
Yamaguchi M.
Tetrahedron
1988,
44:
5333
10f For a review of C2 -symmetric
catalysts and ligands, see: Whitesell JK.
Chem.
Rev.
1989,
89:
1581
11 For a review for the formation of
pyrrolidine rings, see: Pichon M.
Figadere B.
Tetrahedron: Asymmetry
1996,
7:
927
For more recent literatures for
the synthesis and biological activity of I ,
see:
12a
Donohoe TJ.
Headley CE.
Cousins RPC.
Cowley A.
Org.
Lett.
2003,
7:
999
12b
Dondoni A.
Giovannini PP.
Perrone D.
J.
Org. Chem.
2002,
67:
7203
12c
Cubero I.
Plaza Lopez-Espinosa MT.
Robles
Diaz R.
Franco Montalban F.
Carbohydr.
Res.
2001,
330:
401
12d
Saotome C.
Kanie Y.
Kanie O.
Wong C.-H.
Bioorg. Med. Chem.
2000,
8:
2249
12e
Colobert F.
Tito A.
Khiar N.
Denni D.
Medina MA.
Martin-Lomas M.
Ruano JG.
Solladie G.
J. Org. Chem.
1998,
63:
8918
12f
Takayama S.
Martin R.
Wu J.
Laslo K.
Siuzdak G.
Wong C.-H.
J.
Am. Chem. Soc.
1997,
119:
8146
12g
Huwe CM.
Blechert S.
Synthesis
1997,
61
12h
McCort I.
Dureault A.
Depezay J.-C.
Tetrahedron
Lett.
1996,
37:
7717
12i
Asano N.
Oseki K.
Kizu H.
Matsui K.
J. Med. Chem.
1994,
37:
3701
12j
Zou W.
Szarek WA.
Carbohydr. Res.
1993,
242:
311
12k
Masaki Y.
Oda H.
Kazuta K.
Usai A.
Itoh A.
Xu F.
Tetrahedron
Lett.
1992,
33:
5089
12l
Kajimoto T.
Chen L.
Liu K.-C.
Wong C.-H.
J. Am. Chem. Soc.
1991,
113:
6678
12m
Liu K.-C.
Kajimoto T.
Chen L.
Wong C.-H.
J. Org. Chem.
1991,
56:
6280
12n
Huang RR.
Straub JA.
Whitesides GM.
J. Org. Chem.
1991,
56:
3849
12o
Dureault A.
Portal M.
Depezay JC.
Synlett
1991,
225
12p
Reitz AB.
Baxter EW.
Tetrahedron
Lett.
1990,
31:
6777
12q
Shing TKM.
Tetrahedron
1988,
44:
7261
12r
Fleet GWJ.
Smith PW.
Tetrahedron
1987,
43:
971
12s
Card PJ.
Hitz WD.
J.
Org. Chem.
1985,
50:
891
For more recent literatures for
the synthesis and biological activity of II ,
see:
13a
Sifferlen T.
Defoin A.
Streith J.
Nouen DL.
Tarnus C.
Dosbaa I.
Foglietti M.-J.
Tetrahedron
2000,
56:
971
13b
Qiao L.
Murray BW.
Shimazaki M.
Schultz J.
Wong C.-H.
J.
Am. Chem. Soc.
1996,
118:
7653
13c
Wang Y.-F.
Dumas DP.
Wong C.-H.
Tetrahedron
Lett.
1993,
34:
403
13d
Dumas DP.
Kajimoto T.
Liu K.-C.
Wong C.-H.
Berlowitz DB.
Danishefsky SJ.
Bioorg. Med.
Chem. Lett.
1992,
2:
33
13e
Wong C.-H.
Dumas DP.
Ishikawa Y.
Koseki K.
Danishefsky SJ.
Weston RW.
Lowe JB.
J.
Am. Chem. Soc.
1992,
114:
7321
13f
Ishikawa Y.
Lin YC.
Dumas DP.
Shen G.-J.
Garcia-Junceda E.
Williams MA.
Bayer R.
Ketcham C.
Walker LE.
Paulson JC.
Wong C.-H.
J.
Am. Chem. Soc.
1992,
114:
9283
13g
Liu K.-C.
Kajimoto T.
Cheng L.
Zhong Z.
Ichikawa Y.
Wong C.-H.
J. Org. Chem.
1991,
56:
6280
14a
Han H.
Cho CW.
Janda KD.
Chem. Eur. J.
1999,
5:
1565
14b
Han H.
Yoon J.
Janda KD.
J.
Org. Chem.
1998,
63:
2045
14c
Singh OV.
Han H.
Tetrahedron
Lett.
2003,
44:
2387
14d
Han H.
Yang H.
Tetrahedron Lett.
2003,
44:
1567
14e For other similar approaches,
see: Morgan AJ.
Masse CE.
Panek JS.
Org.
Lett.
1999,
1:
1949
14f Also see: Chuang C.-C.
Vassar V.
Ma Z.
Geney R.
Ojima I.
Chirality
2002,
14:
151
15a
Takahata H.
Takehara H.
Ohkubo N.
Takefumi M.
Tetrahedron:
Asymmetry
1990,
1:
561
15b
Harding KE.
Marman TH.
Nam D.-H.
Tetrahedron Lett.
1988,
29:
1627
15c
Harding KE.
Marman TH.
J.
Org. Chem.
1984,
49:
2838
15d
Hill CH.
Whitesides GM.
J.
Am. Chem. Soc.
1974,
96:
870
16
Corey EJ.
Guzman-Perez A.
Noe MC.
J.
Am. Chem. Soc.
1995,
117:
10805
17
Fukuyama T.
Laird AA.
Hotchkiss LM.
Tetrahedron Lett.
1985,
26:
6291
18 The NMR data of 8 and 9 are consistent with those in the literatures
(ref.
[12j ]
for 8 and ref.
[12m ]
for 9 ). For 8 , 1 H
NMR (500 MHz, D2 O) δ 3.73-3.77 (m,
2 H), 3.80-3.86 (m, 4 H), 4.20 (d, 2 H, J = 2.0
Hz); 13 C NMR (125 MHz, D2 O) δ 61.17, 66.58,
78.36. For 9 , 1 H NMR
(500 MHz, D2 O) δ 1.27 (d, 3 H, J = 7.0
Hz), 3.75 (dd, 1 H, J = 7.5
Hz, 10.5 Hz), 3.77-3.87 (m, 3 H), 4.06 (d, 1 H, J = 3.5 Hz), 4.26 (d, 1 H, J = 3.5Hz).