References
1
Gallos JK.
Koumbis AE.
Xiraphari VP.
Dellios CC.
Coutouli-Argyropoulou E.
Tetrahedron
1999,
55:
5167
2
Nataka M.
Akazawa S.
Kitamura S.
Tatsuta K.
Tetrahedron Lett.
1991,
32:
5363
3a
Kobayashi Y.
Miyazaki H.
Shioazaki M.
J. Am. Chem. Soc.
1992,
114:
10065
3b
Kobayashi Y.
Miyazaki H.
Shioazaki M.
J.
Org. Chem.
1994,
59:
813
4
Gallos JK.
Koftis TV.
J. Chem. Soc., Perkin
Trans. 1
2001,
415
5
Srivastava RM.
De Souza AMA.
Da Silva LP.
De Freitas Filho JR.
Hallwass F.
Doboszewski B.
J.
Braz. Chem. Soc.
2002,
13:
158
6
De Freitas Filho JR.
Srivastava RM.
Soro Y.
Cottier L.
Descotes G.
J. Carbohydr. Chem.
2001,
20:
561
7
Toshima K.
Ishizuka T.
Matsuo G.
Nataka M.
Synlett
1995,
306
8
Fraser-Reid B.
Mclean A.
Usherwood EW.
Yunker M.
Can. J. Chem.
1970,
48:
2877 ; and references cited therein
9
Corey EJ.
Venkateswarlu A.
J. Am. Chem. Soc.
1972,
94:
6190
10
Mukaiyama T.
Hoshino T.
J. Am. Chem. Soc.
1960,
82:
5339
11
Srivastava RM.
Clapp LB.
J. Heterocycl. Chem.
1968,
5:
61
12
Hassner A.
Dahren W.
J. Org. Chem.
1990,
55:
5505
13
Representative
Procedure: To a solution of enone 6a-c (1.08 mmol) in cyclohexane (10 mL) was
added nitro-ethane or nitropropane (1.18 mmol), triethylamine (0.12
mmol) and phenyl isocyanate (3.95 mmol). The mixture was stirred
and refluxed during 3 h (approximate time for enone disappearance
on TLC). Then water (8 mL) was added and the resulting mixture was
stirred for 1 h at 20 °C. After extraction of
the product 7d-i with
petroleum ether (2 × 15 mL), drying on
Na2SO4, evaporating the solvent under vacuum,
the raw product was purified on silica gel (eluting with 90/10% petroleum
ether/EtOAc) to afford pure 7d-i. Spectra 1H NMR (300
MHz, CDCl3) of compounds 7d-i: Compound 7d: δ = 4.98
(s, H-1), 4.64 (d, J = 11.2
Hz, H-2), 3.95 (m, H-5, H-6), 3.90 (d, J = 11.2
Hz, H-3), 3.79 (dd, J = 2.4
Hz and 11.3 Hz, H-6′), 3.52 (m, OCH2), 1.84
(s, CH3), 1.15 (t, CH3), 0.83 [s,
(CH3)3CSi], 0.03 (s, CH3Si). Compound 7e: δ = 4.99 (s, H-1),
4.64 (d, J = 11.3 Hz, H-2), 4.03
(m, H-5, H-6), 3.94 (d, J = 11.3
Hz, H-3), 3.70 (dd, J = 2.4
Hz and 10.5 Hz, H-6′), 3.60-3.55 (m, OCH2),
2.34 and 2.10 (m, CH2), 1.22-1.19 (m, CH3),
0.82 [s, (CH3)3CSi], 0.04
(s, CH3Si). Compound 7f: δ = 5.02
(s, H-1), 4.58 (d, J = 11.3
Hz, H-2), 4.20 (m, OCH), 3.97 (m, H-5, H-6), 3.88 (d, J = 11.3 Hz, H-3), 3.78 (dd, J = 2.7 Hz and 10.7 Hz, H-6′), 1.84
(s, CH3), 1.60-1.45 (m, CH2), 0.82 [s,
(CH3)3CSi], 0.01 (s, CH3Si).
Compound 7g: δ = 5.03
(s, H-1), 4.58 (d, J = 11.2 Hz,
H-2), 4.21 (m, OCH), 3.98 (d, J = 11.3
Hz, H-3), 3.94 (m, H-5, H-6), 3.78 (dd, J = 2.61
and 10.9 Hz, H-6′), 2.34 and 2.10 (m, CH2C=N),
1.71-1.48 (m, CH2), 1.16 (t, J = 7.5 Hz,
CH3), 0.81 [s, (CH3)3CSi],
0.09 (s, CH3Si). Compound 7h: δ = 5.18
(s, H-1), 4.62 (d, J = 11.3
Hz, H-2), 4.03 (t, H-5), 3.91 (m, H-3, H-6), 3.78 (dd, J = 10.9 Hz and 2.8 Hz,
H-6′),
3.57 (m, OCH), 1.84 (s, CH3), 1.74-1.19 (m,
CH2), 0.81 [s, (CH3)3CSi],
0.01 (s, CH3Si). Compound 7i: δ = 5.14 (s,
H-1), 4.58 (d, J = 11.3 Hz,
H-2), 3.99 (d, J = 11.3 Hz,
H-3),
3.97 (m, H-5, H-6), 3.77 (dd, J = 2.8
Hz and 10.9 Hz, H-6′), 3.59 (m, OCH), 2.33 and 2.12 (m,
CH2C=N), 1.87-1.47 (m, CH2),
1.12 (t, J = 6.1 Hz, CH3),
0.81 [s, (CH3)3CSi], 0.04
(s, CH3Si).
14
Srivastava RM.
Carthy BJ.
Fraser-Reid B.
Tetrahedron Lett.
1974,
2175
15 The elemental analyses of all new
compounds, viz. 5a-c, 6a-c and 7d-i agreed
with the proposed structures.