Fortschr Neurol Psychiatr 2003; 71: 3-9
DOI: 10.1055/s-2003-40499
Originalarbeit
© Georg Thieme Verlag Stuttgart · New York

Glutamat - Ein Transmitter im Spannungsfeld zwischen Toxin und Trophin

Glutamate - A Transmitter in the Tensionfield Between Toxin and TrophineKonstanze  D.  Römer1 , S.  Bleich1 , J.  Kornhuber1
  • 1Klinik mit Poliklinik für Psychiatrie und Psychotherapie, Friedrich-Alexander-Universität zu Erlangen-Nürnberg
Further Information

Publication History

Publication Date:
08 July 2003 (online)

Zusammenfassung

Glutamat ist der wichtigste exzitatorische Neurotransmitter im Zentralnervensystem. Seine Wirkungsweise ist ebenso vielfältig wie es die molekularen Strukturen der durch Glutamat aktivierbaren Rezeptoren sind. Das glutamaterge System nimmt modulierenden Einfluss auf nahezu sämtliche Neurotransmittersysteme. Zudem spielt Glutamat in wichtigen zentralnervösen Prozessen wie der hippokampalen Langzeitpotenzierung, einem zellulären Modell für Lernen und Gedächtnis, und der zentralen Sensibilisierung für Schmerzreize im Hinterhorn des Rückenmarks eine zentrale Rolle, die insbesondere über den NMDA-Rezeptor vermittelt wird. Doch die Wirkung von Glutamat geht weit über seine Wirkung als exzitatorischer Neurotransmitter hinaus. So entfaltet Glutamat zumindest in bestimmten Entwicklungsphasen des Zentralnervensystems auch eine neurotrophische Wirkung. Die über den NMDA-Rezeptor vermittelte Exzitotoxizität von Glutamat ist als gemeinsame Endstrecke des akuten wie auch des chronischen Nervenzelluntergangs von entscheidender Bedeutung im Hinblick auf zahlreiche akute neurologische, neurodegenerative und neurometabolische Erkrankungen. Von einer Modulation des glutamatergen Systems z. B. durch Glutamatantagonisten erhofft man sich daher neuartige Therapien dieser pathogenetisch unterschiedlichen Erkrankungen.

Abstract

Glutamate is the most important excitatory transmitter in the central nervous system. A tremendous complexity in the actions of this excitatory transmitter was found and an equally great complexity in the molecular structures of the receptors activated by glutamate. The glutamate receptor system influences nearly all other neurotransmitter systems. Glutamate also plays a central role in important processes of the central nervous system like the long-term potentiation in the hippocampus and the central sensitization for pain stimuli in the spinal cord, which is predominantly mediated by NMDA-receptors. But there are actions of glutamate beyond its function as an excitatory transmitter. Glutamate also has a trophic influence on neurons - depending upon the developmental stage. The excitotoxicity of glutamate mediated by NMDA-receptors is the common ultimate mechanism of acute and chronical nerve cell death and plays an important role in many acute neurologic diseases. The modulation of the glutamate system for example by antagonist of the glutamate-receptors might be a possible way in therapy of many different diseases of the central nervous system.

Literatur

  • 1 Michaelis E K. Molecular biology of glutamate receptors in the central nervous system and their role in excitotoxicity, oxidative stress and aging.  Progress in Neurobiology. 1998;  45 369-415
  • 2 Bleich S, Degner D, Bandelow B, Ahsen N von, Rüther E, Kornhuber J. Plasma Homocysteine is a predictor of alcohol withdrawal seizures.  NeuroReport. 2000;  11 2749-2752
  • 3 Bleich S, Spilker K, Kurth C, Degner D, Quintela-Schneider M, Javaheripour K, Rüther E, Kornhuber J, Wiltfang J. Oxidative stress and an altered methionine metabolism in alcoholism.  Neurosci Lett. 2000;  293 171-174
  • 4 Bleich S, Degner D, Kornhuber J. Repeated ethanol withdrawal delays development of focal seizures in hippocampal kindling.  Alcohol Clin Exp Res. 2000;  24 244-245
  • 5 Bleich S, Degner D, Wiltfang J, Maler J M, Niedmann P, Cohrs S, Mangholz A, Protzig J, Spring R, Rüther E, Kornhuber J. Elevated homocysteine levels in alcohol withdrawal.  Alcohol Alcohol. 2000;  35 351-354
  • 6 Heresco-Levy U, Javitt D C. The role of N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission in the pathophysiology and therapeutics of psychiatric syndroms.  European Neuropsychopharmacology. 1998;  8 141-152
  • 7 Parsons C G, Danysz W, Quack G. Glutamate in CNS disorders as a target for drug development: an update.  Drug News Perspect. 1998;  11 523-569
  • 8 Spanagel R, Kornhuber J. Glutamatrezeptorantagonisten und Alkoholabhängigkeit.  Nervenarzt. 1999;  70 479-481
  • 9 Ozawa S, Kamiya H, Tsuzuki K. Glutamate receptors in the mammalian central nervous system.  Progress in Neurobiology. 1998;  54 581-618
  • 10 Danbolt N C. Glutamate uptake.  Progress in Neurobiology. 2001;  65 1-105
  • 11 Fadda F, Rossetti Z L. Chronic ethanol consumption: from neuroadaptation to neurodegeneration.  Progress in Neurobiology. 1998;  56 385-431
  • 12 Meldrum B S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology.  J Nutr Suppl. 2000;  130 1007-1015
  • 13 Fonnum F. Glutamate: A neurotransmitter in mammalian brain.  J Neurochemistry. 1984;  42 1-11
  • 14 Kornhuber J, Bleich S. Memantin. In: Riederer P, Laux G, Pöldinger W (Hrsg). Neuro-Psychopharmaka. Wien: Springer 1999: 687-704
  • 15 Cotman C W, Kahle J S, Miller S E, Ulas J, Bridges R J. Excitatory Amino Acid Neurotransmission. In: Bloom FE, Kupfer DJ (Hrsg). Psychopharmacology: The fourth Generation of Progress New York: Raven Press 1995: 75-85
  • 16 Mayer M L, Westbrook G L. The physiology of excitatory amino acids in the vertebrate nervous system.  Prog Neurobiol. 1987;  28 198-276
  • 17 Collingridge G L, Bliss T V. NMDA receptors - their role in long-term potentiation.  TINS. 1987;  10 288-293
  • 18 Collingridge G L, Kehl S J, McLennan H. The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurons in vitro.  J Physiol. 1983;  334 19-31
  • 19 Errington M L, Lynch M A, Bliss T V. Long-term potentation in the dentate gyrus: induction and increased glutamate release are blocked by D-aminophosphonovalerate.  Neuroscience. 1987;  20 279-284
  • 20 Bliss T V, Errington M L, Laroche S, Lynch M A. Increase in K+-stimulated, Ca2+-dependent release of [3H] glutamate from rat dentate gyrus three days after induction of long-term potentation.  Neurosci Lett. 1987;  83 107-112
  • 21 Woolf C J, Salter M W. Neuronal plasticity and the generation of inflammatory pain.  Proc Natl Acad Sci. 2000;  288 1765-1769
  • 22 Sandkühler J. Learning and memory in pain pathways.  Pain. 2000;  88 113-118
  • 23 Basbaum A I, Fields H L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry.  Neuroscience. 1984;  7 309-338
  • 24 Castro-Lopes J M, Tavares I, Coimbra A. GABA decreases in the spinal cord dorsal horn after peripheral neurectomy.  Brain Res. 1993;  620 287-291
  • 25 Liu H, Wang H, Sheng M, Jan L Y, Basbaum A I. Evidence for presynaptic N-methyl-D-aspartate receptors in the spinal cord dorsal horn.  Proc Natl Acad Sci USA. 1994;  91 8383-8387
  • 26 Neugebauer V, Kornhuber J, Lücke T, Schaible H G. The clinically available NMDA receptor antagonist memantine is antinociceptive on rat spinal neurones.  NeuroReport. 1993;  4 1259-1262
  • 27 Lucas D R, Newhouse J P. The toxic effect of sodium L-glutamate on the inner layers of the retina.  AMA Arch Ophthalmol. 1957;  58 193-201
  • 28 Perl T M, Bédard L, Kosatsky T, Hockin J C, Todd E CD, Remis R S. An outbreak of toxic encephalopathy caused by eating mussels contaminated with domoic acid.  N Engl J Med. 1990;  322 1775-1780
  • 29 Olney J W, Price M T, Salles K S, Labruyere J, Ryerson R, Mahan K, Friedrich G, Samson L. L-homocysteic acid: an endogenous excitotoxic ligand af the NMDA receptor.  Brain Res Bull. 1987;  19 597-602
  • 30 Bouvier M, Szatkowski M, Amato A, Attwell D. The glial cell glutamate uptake carrier countertransports pH-changing anions.  Nature. 1992;  360 471-474
  • 31 Clements J D, Lester R AJ, Tong G, Jahr C E, Westbrook G L. The time course of glutamate in the synaptic cleft.  Science. 1992;  258 1498-1501
  • 32 Arendash G W, Millard W J, Dunn A J, Meyer E W. Long-term neuropathological and neurochemical effects of nucleus basalis lesions in the rat.  Science. 1987;  238 952-956
  • 33 Beal M F. Mechanisms of excitotoxicity in neurologic diseases.  FASEB J. 1992;  6 3338-3344
  • 34 Chapman A G. Glutamate and epilepsy.  J Nutr Suppl. 2000;  130 1043-1045
  • 35 DeBoni U, McLachlan D RC. Controlled induction of paired helical filaments of the Alzheimer type in cultured human neurons, by glutamate and aspartate.  J Neurol Sci. 1985;  68 105-118
  • 36 Koh J Y, Yang L L, Cotman C W. β-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage.  Brain Res. 1990;  533 315-320
  • 37 Mattson M P, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel R E. β-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity.  J Neurosci. 1992;  12 376-389
  • 38 Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease.  TiPS. 1990;  11 379-387
  • 39 Lipton S A, Rosenberg P A. Mechanisms of disease: Excitatory amino acids as a final common pathway for neurologic disorders.  N Eng J Med. 1994;  330 613-622
  • 40 Kornhuber J, Bormann J, Retz W, Hübers M, Riederer P. Memantine displaces [³H]MK-801 at therapeutic concentrations in postmortem human frontal cortex.  European Journal of Pharmacology. 1989;  166 589-590
  • 41 Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study.  European Journal of Pharmacology. 1991;  206 297-300
  • 42 Kornhuber J, Bleich S, Wiltfang J, Maler M, Parsons C G. Flupirtine shows functional NMDA receptor antagonism by enhancing Mg2+ block via activation af voltage independent potassium channels.  J Neural Transm. 1999;  106 857-867
  • 43 Ripley T L, Little H J. Effects of chronic ethanol withdrawal hyperexcitability of chronic treatment with a competitive N-methyl-D-aspartate receptor antagonist.  J Pharmacol Exp Ther. 1995;  272 112-118
  • 44 Allen H L, Iversen L L. Phencyclidine, dizocilpine, and cerebrocortical neurons.  Science. 1990;  247 221
  • 45 Olney J W, Labruyere J, Price M T. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs.  Science. 1989;  244 1360-1362
  • 46 Minabe Y, Tamura A. Memantine induces heat shock protein HSP70 in the posterior cingulate cortex, retrosplenial cortex and dentate gyrus of rat brain.  Brain Res. 1996;  740 1-5
  • 47 Sharp F R, Jasper P, Hall J, Noble L, Sagar S M. MK-801 and ketamine induce heat shock protein HSP72 in injured neurons in posterior cingulate and retrosplenial cortex.  Ann Neurol. 1991;  30 801-809
  • 48 Tomitaka S, Hashimoto K, Narita N, Sakamoto A, Rakic P, Sidman R L. Organization of the cerebellar cortex secondary to deficit of granule cells in weaver mutant mice.  J Comp Neurol. 1973;  152 133-162
  • 49 Danysz W, Parsons C G, Kornhuber J, Schmidt W J, Quack G. Aminoadamantanes as NMDA receptor antagonists and antiparkinsonian agents - preclinical studies.  Neurosci Biobehav Rev. 1997;  21 455-468
  • 50 Kornhuber J, Weller M, Schoppmeyer K, Riederer P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties.  J Neural Transm Suppl. 1994;  43 91-104
  • 51 Kornhuber J, Jellinger K, Wiltfang J, Leblhuber F, Riederer P. The N-methyl-D-aspartate receptor channel blocker amantadine does not cause histopathological alterations in human brain tissue.  Acta Neuropathol (Berl). 1999;  98 85-90
  • 52 Kornhuber J, Weller M. Psychotogenicity and NMDA receptor antagonism: implications for neuroprotective pharmacotherapy.  Biol Psychiatry. 1997;  41 135-144
  • 53 Misztal M, Frankiewicz T, Parsons C G, Danysz W. Learning deficits induced by chronic intraventriculas infusion of quinolinic acid - protection by MK-801 an memantine.  Eur J Pharmacol. 1996;  296 1-8
  • 54 Wenk G L, Danysz W, Roice D D. The effects of mitochondrial failure upon cholinergic toxicity in the nucleus basalis magnocellularis.  Eur J Pharmacol. 1995;  293 267-270
  • 55 Kornhuber J, Quack G. Cerebrospinal fluid and serum concentrations of the N-methyl-D-aspartate (NMDA) receptor antagonist memantine in man.  Neuroscience letters. 1995;  195 137-139
  • 56 Kroemer R T, Koutsilieri E, Hecht P, Liedl K R, Riederer P, Kornhuber J. Quantitative Analysis of the structural requirements for blockade of the N-methyl-D-aspartate receptor at the phencyclidine binding site.  J Med Chem. 1998;  41 393-400
  • 57 Balázs R, Hack N, Jorgensen O S. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells.  Neuroscience Letters. 1988;  87 80-86
  • 58 Balázs R, Jorgensen O S, Hack N. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture.  Neuroscience. 1988;  27 437-451
  • 59 Balázs R, Hack N, Jorgensen O S, Cotman C W. N-Methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization.  Neuroscience Letters. 1989;  110 241-246
  • 60 Balázs R, Resink A, Hack N, Valk J BF van der, Kumar K N, Michaelis E. Neuroscience Letters. 1992;  137 109-113
  • 61 Gallo V, Kingbury A, Balázs R, Jorgensen O S. The role of depolarization in the survival and differentation of cerebellar granule cells in culture.  J Neurosci. 1987;  7 2203-2213
  • 62 Rakic P, Sidman R L. Organization of the cerebellar cortex secondary to deficit of ganule cells in weaver mutant mice.  J Comp Neurol. 1973;  133-163
  • 63 Burgoyne R D, Cambray-Deakin M A. The cellular neurobiology of neuronal development: the cerebellar granule cell.  Brain Res Rev. 1988;  13 77-101
  • 64 Rauschecker J P, Hahn S. Ketamine-xylazine anaesthesia blocks consolidation of ocular dominance changes in kitten visual cortex.  Nature (London). 1987;  326 183-185

Dr. med. Konstanze D. Römer

Friedrich-Alexander-Universität zu Erlangen-Nürnberg · Klinik mit Poliklinik für Psychiatrie und Psychotherapie

Schwabachanlage 6 - 10

91054 Erlangen

Email: Konstanze.Roemer@psych.imed.uni-erlangen.de