Int J Sports Med 2003; 24(5): 366-371
DOI: 10.1055/s-2003-40700
Training & Testing
© Georg Thieme Verlag Stuttgart · New York

Reliability of a Combined 3-min Constant Load and Performance Cycling Test

M.  Doherty1 , J.  Balmer2 , R.  C.  R.  Davison1 , L.  Robinson1 , P.  M.  Smith1
  • 1Department of Sport, Exercise and Biomedical Sciences, University of Luton, Luton, UK
  • 2School of Science and Social Science, Liverpool Hope University College, Liverpool, UK
Further Information

Publication History

Accepted after revision: January 30, 2003

Publication Date:
17 July 2003 (online)

Abstract

Most fitness assessments either use a constant load to exhaustion (exercise capacity test) or an “all-out” effort (performance test). The purpose of this study was to determine the reliability of a high-intensity assessment that combined a constant load element with a performance test. Ten moderately trained male cyclists completed a ramp test to voluntary exhaustion in order to measure maximum minute power output (mean ± s, 349.3 w ± 55.0 w). On two other occasions subjects cycled at a constant load at maximum minute power output for 2-min immediately followed by a 1-min performance test. All tests were conducted on the subjects’ own bicycles using a Kingcycle™ test rig. Power output was measured each second using SRM™ Power Cranks. The data were analysed by measuring the reliability of each 30 s of the 3-min test together with the peak power and the peak cadence achieved in the performance element of the test. There was no systematic bias in the data from trial 1 to trial 2 for any of the 6, 30 s blocks of the test, the peak power (mean, 95 % CI, 413.8 w, 357.8 - 469.7 w and 403.8 w, 339.9 - 467.6 w, trial 1 and trial 2, respectively) or peak cadence (95.0 rev × min-1, 89.5 - 100.5 rev × min-1 and 95.1 rev × min-1, 90.0 - 100.1 rev × min-1, trial 1 and trial 2, respectively). Mean (± s) total distance over the 3-min was 2.23 ± 0.23 km and 2.26 ± 0.26 km for trial 1 and trial 2 respectively (p > 0.05). The coefficients of variation ranged from 0.9 - 5.4 % and the intraclass correlation coefficients ranged from 0.96 - 0.99. It is concluded that in moderately trained subjects, the 3-min combination test provides reliable data and could therefore be used for short-term, high-intensity cycling intervention studies.

References

  • 1 Atkinson G, Nevill A M. Statistical methods for assessing measurement error (reliability) in variables relevant to Sports Medicine.  Sports Med. 1998;  26 217 - 238
  • 2 Balmer J, Davison R CR, Bird S. Peak power predicts performance power during an outdoor 16.1-km cycling time trial.  Med Sci Sports Exerc. 2000;  32 1485 - 1490
  • 3 Bangsbo J. Oxygen deficit: a measure of the anaerobic energy production during intense exercise.  Can J Appl Physiol. 1996;  21 350 - 363
  • 4 Billat V, Renoux J C, Pinoteau J, Petit B, Koralsztein J P. Reproducibility of running time to exhaustion at V˙O2 max in subelite runners.  Med Sci Sport Exerc. 1994;  26 254 - 257
  • 5 Bird S, Davison RCR (eds) Physiological testing guidelines 3rd edition. Leeds, British Association of Sport and Exercise Sciences 1997: 112-118
  • 6 Coggan A R, Costill D L. Biological and technological variability of three anaerobic ergometer tests.  Int J Sports Med. 1984;  5 142 - 145
  • 7 Davison R CR, Swan D, Coleman D, Bird S. Correlates of simulated hill climb cycling performance.  J Sports Sci. 2000;  18 105-110
  • 8 Doherty M, Smith P M, Schroder K. Reproducibility of the maximal accumulated oxygen deficit and run-time to exhaustion during short distance running.  J Sport Sci.. 2000;  18 331 - 338
  • 9 Doyle J A, Martinez A L. Reliability of a protocol for testing endurance performance in runners and cyclists.  Res Quart Exerc Sport. 1998;  69 304 - 307
  • 10 Evans J A, Quinney H A. Determination of resistive settings for anaerobic power testing.  Can J Sports Sci. 1985;  6 53 - 56
  • 11 Finn J, Gastin P, Withers R, Green S. Estimation of peak power and anaerobic capacity of athletes. In: Physiological tests for elite athletes. Champaign, Illinois; Human Kinetics 2000: 47
  • 12 Gastin P B. Quantification of anaerobic capacity.  Scand J Med Sci Sport. 1994;  4 91 -112
  • 13 Gastin P B, Costill D L, Lawson D L, Krzeminski K, McConell G K. Accumulated oxygen deficit during all-out and constant intensity exercise.  Med Sci Sport Exerc. 1995;  27 255 - 263
  • 14 Green S. Measurement of anaerobic work capacities in humans.  Int J Sports Med. 1995;  19 32 - 42
  • 15 Green S, Dawson B. Methodological effects on the V˙O2- power regression and the accumulated O2 deficit.  Med Sci Sport Exerc. 1996;  28 392 - 397
  • 16 Hebestreit H, Mimura K, Bar-Or O. Recovery of anaerobic muscle power following 30-s supramaximal exercise: Comparing boys and men.  J Appl Physiol. 1993;  74 2875 - 2880
  • 17 Hickey M S, Costill D L, McConnell G K, Widrick J J, Tanaka H. Day to day variation in time trial cycling performance.  Int J Sports Med. 1992;  13 467 - 470
  • 18 Hopkins W G, Hawley J A, Burke L M. Design and analysis of research on sport performance enhancement.  Med Sci Sport Exerc. 1999;  31 472 - 485
  • 19 Hopkins W G, Schabort E J, Hawley J A. Reliability of power in physical performance tests.  Sports Med. 2001;  31 211 - 234
  • 20 Inbar O, Bar-Or O, Skinner J S. The Wingate Anaerobic Test. Champaign; Human Kinetics 1996: 25-40
  • 21 Jenson K, Johansen L. Reproducibility and validity of physiological parameters measured in cyclists riding on racing bikes placed on a stationary magnetic brake.  Scand J Med Sci Sports. 1998;  8 1- 6
  • 22 Jeukendrup A, Saris W HM, Brouns F, Kester A DM. A new validated endurance performance test.  Med Sci Sport Exerc. 1996;  28 266 - 270
  • 23 Jones S, Passfield L. The dynamic calibration of bicycle power measuring cranks. In: Haake SJ (ed). The engineering of sport Oxford; Blackwell Science 1998: 265-274
  • 24 Kaczkowski W, Montgomery D L, Taylor A W, Klissouras V. The relationship between muscle fiber composition and maximal anaerobic power and capacity.  J Sports Med. 1982;  22 407 - 413
  • 25 Krebs P S, Powers S K. Reliability of laboratory endurance tests.  Med Sci Sport Exerc. 1989;  21 510
  • 26 Marino F E, Kay D, Cannon J, Serwach N, Hilder M. A reproducible and variable intensity cycling performance protocol for warm conditions.  J Sci Med Sport. 2002;  5 95 - 107
  • 27 Martin J C, Milliken D L, Cobb J E, McFadden K L, Coggan A R. Validation of a mathematical model for road cycling.  J Appl Biomech. 1998;  14 276 - 291
  • 28 McLellan T M, Cheung S S, Jacobs I. Variability of time to exhaustion during submaximal exercise.  Can J Appl Physiol. 1995;  20 39 - 51
  • 29 Medbø J I, Mohn A, Tabata I, Bahr I, Sejersted O. Anaerobic capacity determined by the maximal accumulated oxygen deficit.  J Appl Physiol. 1988;  64 50 - 60
  • 30 Nevill A M, Atkinson G. Assessing agreement between measurements recorded on a ratio scale in sports medicine and sports science.  Brit J Sports Med. 1997;  31 314 -318
  • 31 Olesen H L, Raabo E, Bangsbo J, Secher N H. Maximal oxygen deficit of sprint and middle distance runners.  Euro J Appl Physiol. 1994;  69 140 - 146
  • 32 Paton J, Murphy M, Frederick F. Maximal power outputs during the Wingate Anaerobic Test.  In J Sports Med. 1985;  6 82 - 85
  • 33 Paton C D, Hopkins W G. Tests of cycling performance. Sports Med 2001: 489-496
  • 34 Saltin B. Anaerobic capacity: past, present, and prospective. (1990). In; Taylor S.W. et al (eds). Biochemistry of exercise VII. Champaign Human Kinetics 1990: 387-412
  • 35 Schabort EJ, Hopkins W G, Hawley J A. Reproducibility of self-paced treadmill performance of trained endurance runners.  Int J Sports Med. 1998;  19 48 - 51
  • 36 Schabort EJ, Hawley J A, Hopkins W G, Mujika I, Noakes T D. A new reliable laboratory test of endurance performance for road cyclists.  Med Sci Sport Exerc. 1998;  30 1744 -1750
  • 37 Smith M F, Davison R CR, Balmer J, Bird S R. Reliability of mean power recorded during indoor and outdoor self-paced 40 km cycling time trials.  Int J Sports Med. 2001;  22 270 -274
  • 38 Spriet L L. Anaerobic metabolism during high-intensity exercise. In: Exercise metabolism. Hargreaves, M. (ed) Champaign, IL; Human Kinetics 1995: 1-39
  • 39 Thomas J R, Nelson J K. Research methods in physical activity 3rd edition. champaign; Human Kinetics 1996: 221-224
  • 40 Vandewalle H, Pérès G, Monod H. Standard anaerobic tests.  Sports Med. 1989;  4 268 - 289

M. Doherty

University of Luton · Department of Sport, Exercise and Biomedical Sciences

Park Square · Luton · Beds LU1 3JU · United Kingdom ·

Phone: +44-1582-34111

Fax: +44-1582-489212

Email: mike.doherty@luton.ac.uk