Abstract
Six metal-tolerant populations and sub-populations of Armeria maritima ssp. halleri, ssp. hornburgensis, and ssp. bottendorfensis and two non-tolerant populations of ssp. elongata in Central and Northeast Germany have been analysed using RAPD markers. The populations show very strong genetic differentiation (ΦST = 0.46), corresponding gene flow between them is low (Ne m = 0.29). A moderate positive correlation between the matrices of genetic and geographical distances was found between the seven populations and sub-populations of central Germany (r = 0.68, p < 0.001). Calculated parameters of genetic variability are molecular variance, percentage of heterozygosity and percentage of polymorphic loci. A significant correlation between population size and parameters of genetic variability was not recognisable. Genetic structure was investigated by an analysis of molecular variance (AMOVA). The studied populations show strong genetic differentiation. Genetic variation within populations (“normal” as well as metalliferous) is higher (53.9 %) than among them (46.1 %). Six hypotheses of possible genetic relatedness between the studied populations have been tested by AMOVA. A data set structure above the populational level is hardly recognisable. It was impossible to combine the populations to edaphic (tolerant and “non-tolerant”) or taxonomic groups. A. maritima ssp. halleri of the north Harz mountains and ssp. hornburgensis are clearly separated from a geographical group containing all other populations (across taxonomic and edaphic boundaries). These results are a further indication for a polyphyletic origin of metal-tolerant populations of A. maritima s.l. by multiple colonizations of metalliferous sites from neighbouring populations on non-metalliferous soil.
Key words
Armeria maritima s.l - metal-tolerant populations - genetic variation - RAPD - AMOVA
References
1
Baumbach H., Volkmann H. K. M..
Dynamik, genetische Struktur und Schutz kleiner Populationen - das Beispiel von Armeria maritima ssp. hornburgensis.
.
Mitt. florist. Kart. Sachsen-Anhalt.
(2002);
7
3-24
2
Brunell M. S., Whitkus R..
RAPD marker variation in Eriastrum densifolium (Polemoniaceae): Implications for subspecific delimitation and conservation.
Systematic Botany.
(1997);
22 (3)
543-553
3
Christiansen W..
Die mitteldeutschen Formenkreise der Gattung Armeria.
.
Bot. Archiv.
(1931);
31
247-265
4 Excoffier L.. AMOVA (ver. 1.55). Genetics and Biometry Laboratory. University of Geneva (1992)
5
Excoffier L., Smouse P., Quattro J..
Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data.
Genetics.
(1992);
131
479-491
6
Fischer M., Matthies D..
RAPD Variation in relation to population size and plant fitness in the rare Gentianella germanica (Gentianaceae).
American Journal of Botany.
(1998);
85 (6)
811-819
7
Hellwig F. H., Nolte M., Ochsmann J., Wissemann V..
Rapid isolation of total cell DNA from milligram plant tissue.
Haussknechtia.
(1999);
7
29-34
8
Lefebvre C..
Self-fertility in maritime and zinc mine populations of Armeria maritima (Mill.)
Willd. Evolution.
(1970);
24
571-577
9
Lefebvre C..
Outbreeding and inbreeding in a zinc-lead mine population of Armeria maritima.
.
Nature.
(1973);
243
96-97
10
Lefebvre C..
Population variation and taxonomy in Armeria maritima with special reference to heavy-metal-tolerant populations.
New Phytol..
(1974);
73
209-219
11
Lynch M., Milligan B. G..
Analysis of population genetic structure with RAPD markers.
Molecular Ecology.
(1994);
3
91-99
12
Mantel N..
The detection of disease clustering and a generalized regression approach.
Cancer Research.
(1967);
27
209-220
13
Mengoni A., Conelli C., Galardi F., Gabrielli R., Bazzicalupo M..
Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis.
Molecular Ecology.
(2000);
9
1319-1324
14 Miller M.. Tools for population genetic analysis (TFPGA) 1.3: A windows program for the analysis of allozyme and molecular population genetic data. (1997)
15
Nei M..
Genetic distance between populations.
American Naturalist.
(1972);
106 (949)
283-292
16
Nei M..
Estimation of average heterozygosity and genetic distance from a small number of individuals.
Genetics.
(1978);
89
583-590
17
Nei M., Maruyama T., Chakraborty R..
The bottleneck effect and genetic variability in populations.
Evolution.
(1975);
29 (1)
1-10
18
Nieto Feliner G., Fuertes Aguilar J., Rosello J. A..
Reticulation or divergence: the origin of a rare serpentine endemic assessed with chloroplast, nuclear and RAPD markers.
Plant Syst. Evol..
(2002);
231
19-38
19 Podani. J.. Syn-Tax-pc. Computer programs for multivariate data analysis in ecology and systematics. Version 5.0. Budapest; (1993)
20 Reinicke R.. Mönchgut. Rostock; K. Reich (1997)
21 Scanalytics .RFLPSCAN Plus Version 3.0. Billerica. MA. USA. (1996)
22 Schneider S. J., Kueffer M., Roessli D., Excoffier L.. Arlequin version 1.1. University of Geneva (1997)
23
Schubert R..
Zur Systematik und Pflanzengeographie der Charakterpflanzen der Mitteldeutschen Schwermetallpflanzengesellschaften.
Wiss. Z. Univ. Halle, math.-nat..
(1954);
3
863-882
24 Schubert R., Hilbig W., Klotz S.. Bestimmungsbuch der Pflanzengesellschaften Mittel- und Nordostdeutschlands. Jena; Gustav-Fischer-Verlag (1995)
25 Schulz A.. Über die auf schwermetallhaltigem Boden wachsenden Phanerogamen Deutschlands. 40. Jahresbericht des Westfälischen Provinzial-Vereins für Wissenschaft und Kunst. Münster; (1912)
26
Vekemans X., Lambert A., Lefebvre C..
Isozyme variation at the populational level in Armeria maritima.
.
Belg. Journ. Bot..
(1992);
125 (2)
270-275
27
Vekemans X., Lefebvre C..
On the evolution of heavy-metal tolerant populations in Armeria maritima : Evidence from allozyme variation and reproductive barriers.
J. Evol. Biol..
(1997);
10 (2)
175-191
28
Wallroth F. W..
Monographischer Versuch über die Gewächsgattung Armeria Willd.
Beiträge zur Botanik.
(1842);
1 (1)
168-218
29
Weidema I. R., Siegismund H. R., Philipp M..
Distribution of genetic variation within and among Danish populations of Armeria maritima, with special reference to the effects of population size.
Hereditas.
(1996);
124 (2)
121-129
30
Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V..
DNA polymorphisms amplified by arbitrary primers are useful as genetic markers.
Nucleic Acids Research.
(1990);
18 (22)
6531-6535
31
Wright S..
Isolation by distance.
Genetics.
(1943);
28
139-156
32
Wright S..
The genetical structure of populations.
Annals of Eugenetics.
(1951);
15
323-354
33 Wright S.. Evolution and the genetics of populations. Vol. IV - Variability within and among natural populations. Chicago; The University of Chicago Press (1978)
H. Baumbach
Institut für Spezielle Botanik Friedrich-Schiller-Universität
Philosophenweg 16
07743 Jena
Germany
Email: baumbach@otto.biologie.uni-jena.de
Section Editor: F. Salamini