References
1
Bregadze VI.
Chem.
Rev.
1992,
92:
209
2
Valliant JF.
Guenther KJ.
King AS.
Morel P.
Schaffer P.
Sogbein OO.
Stephenson KA.
Coord. Chem. Rev.
2002,
232:
173
For examples in the meta-carborane series, see:
3a
Das BC.
Kabalka GW.
Srivastava RR.
Bao W.
Das S.
Li G.
J. Orgmet. Chem.
2000,
614-615:
255
3b
Das BC.
Das S.
Li G.
Bao W.
Kabalka GH.
Synlett
2001,
1417
3c
Kabalka GW.
Das BC.
Das S.
Li G.
Srivastava RR.
Natarajan N.
Khan MK.
Coll. Czech. Chem. Commun.
2002,
67:
836
4
Kane RR.
Pak RH.
Hawthorne FW.
J. Org. Chem.
1993,
58:
991
5a
Holman GD.
Rees WD.
Biochim.
Biophys. Acta
1982,
685:
78
5b
Joost H.-G.
Thorens B.
Mol. Membr. Biol.
2001,
18:
247
5c
Dwyer DS.
Vannucci SJ.
Simpson IA.
Int. Rev. Neurobiol.
2002,
51:
159
5d
Medina RA.
Owen GI.
Biol.
Res.
2002,
35:
9
6a
Gomez FA.
Hawthorne MF.
J. Org. Chem.
1992,
57:
991
6b
Vinas C.
Benakki R.
Texidor F.
Casabo J.
Inorg. Chem.
1995,
34:
991
7
Heying TL.
Ager JW.
Clark SL.
Mangold DJ.
Goldstein HJ.
Hillman M.
Polak RJ.
Szymanski JW.
Inorg. Chem.
1963,
2:
1089
8
Kitahara T.
Ogawa T.
Naganuma T.
Masui M.
Agric. Biol. Chem.
1974,
38:
2189
9
Bleriot Y.
Veighey CR.
Smelt KH.
Cadefeau J.
Stalmans W.
Biggadike K.
Lane AL.
Muller M.
Watkin DJ.
Fleet GWJ.
Tetrahedron:
Asymmetry
1996,
7:
2761
10a
Owen LN.
Peat S.
Jones WGJ.
J. Chem.
Soc.
1941,
339
10b
Abbadi M.
Holman GD.
Morin C.
Rees WD.
Yang J.
Tetrahedron
Lett.
1999,
40:
5861
11 General procedure for opening of lactone 2 with amines (5-15 mmole scale):
To a solution of lactone in acetonitrile (10 mL/mmole)
was added an excess of amine (2-4 equiv) and the mixture
was stirred overnight after which time volatiles were removed. Compound 4 was obtained quantitatively without purification
while isolation of pure 6 (87%)
and 7 (98%) was performed by flash
chromatography on silica gel (eluent:CH2Cl2/CH3OH,
95:5).
4: 1H
NMR (300 MHz,, CDCl3): 7.38 (t, J = 5.4
Hz, 1 H, NH); 5.97 (d, J
1,2 = 3.6
Hz, 1 H, H-1); 4.84-4.07 (m, 8 H); 2.32 (t, J
1
′,3
′ = 2.5
Hz, 1 H, H-3′); 1.48 (s, 3 H, CH3); 1.31 (s, 3
H, CH3). 13C NMR (75 MHz,
CDCl3): 172.3 (C-6); 112.2 (C-1); 105.2 [C(CH3)2];
85.1; 80.8; 79.1 (C-3′); 75.2; 72.0 (C-2′); 69.7;
29.2 (C-1′); 26.8 (CH3); 26.2 (CH3). 6: 1H NMR (300 MHz,,
CDCl3): 5.96 (d, J
1,2
= 3.5 Hz, 1 H, H-1);
4.76-4.43 (m, 4 H); 4.10-3.82 (m, 3 H); 3.40-3.10
(m); 3.16 (s, H-1′′); 3.09 (s, H-1); 2.32 (t, J
1
′-3
′ = 2.4
Hz, H-3′); 2.26 (t,
J
1
′-3
′ = 2.4
Hz, H-3′); 1.46 (s, 3 H, CH3); 1.31 (s, 3 H,
CH3). 13C NMR (75 MHz, CDCl3):
172.9 and 172.8 (C-6); 112.1 [C(CH3)2];
112.0 [C(CH3)2]; 105.6 (C-1);
84.5; 82.7*; 77.9; 75.7; 75.6; 73,3; 72.7; 65.9;
39.0 (C-1′); 37.6 (C-1′); 34.6 (C-1′′);
34.1 (C-1′); 26.9 (CH3); 26.3 (CH3). 7 1H NMR (300 MHz,
CD3OD): 5.90 (d, J
1,2 = 3.6
Hz, 1 H, H-1); 4.47 (d,
J
1,2 = 3.6
Hz, 1 H, H-2); 4.34-4.37 (dapp, J
app = 6.0 Hz, 1
H,); 4.26-4.16 (m, 4 H); 4.08-4.05 (tapp, J
app = 1.9 Hz, 2
H,); 1.44 (s, 3 H, CH3); 1.29 (s, 3 H,CH3). 13C
NMR (75 MHz, CD3OD): 174.3 (C-6); 112.9 [C(CH3)2];
106.4 (C-1); 86.4; 82.3; 81.9; 81.3; 75.9; 71.0; 50.7 (C-4′);
29.6 (C-1′); 271 (CH3); 264 (CH3). [α]20
D -13
(c 6; MeOH).
12a 4-Hydroxy-but-2-ynamine
was prepared by overnight stirring of a solution of 4-tosyloxybut-2-yn-1-ol
in ammonium hydroxide, followed by evaporation and treatment of
the crude solid with Dowex 1X8 R3N+Cl- pre-washed
with 4% NaOH aq solution. The brown oil thus obtained should
be used without delay.
12b For more information
on 4-hydroxy-but-2-ynamine, see: Marszak-Fleury A.
Laroche J.
Bull. Soc. Chim. Fr.
1963,
1270
12c For more information
on synthetic procedure, see: Dumez E.
Faure R.
Dulcere J.-P.
Eur.
J. Org. Chem.
2001,
2577
12d Analytical data for
the tosylate salt: mp 94-96 °C. 1H NMR
(300 MHz, D2O) 7.60 (d, 2 H, J = 7.1
Hz, ArH), 7.27 (d, 2 H, J = 7.1
Hz, ArH), 4.18 (s, 2 H, H-4), 3.77 (s, 2 H, H-1), 2.30 (s, 3 H,
CH3). 13C NMR 140.0 (Cquat
Ar), 137.9 (Cquat Ar); 127.2 (CH Ar), 123.1 (CH Ar), 82.5 and 73.8
(C-2, C-3), 47.1 and 27.0 (C-1, C-4), 18.3 (CH3).
12e Similarly, but-2-yn-1,4-diamine
was prepared from 1,4-bis-mesyloxy-but-2-yne, see: Haslinger H.
Soloway AH.
J. Med.
Chem.
1966,
9:
792
12f Analytical data for
its bis mesylate salt: mp 160 (dec.) 1H NMR
(300 MHz, D2O) 3.77 (s, 4 H, H-1/H-4), 2.58
(s, 6 H, CH3). 13C NMR 79.1
(C-2/
C-3), 39.2 (CH3), 29.8 (C-1/C-4).
13 Such a derivative could be useful
in the preparation of bis-glycosyl-carboranes (Panza, L. et al., manuscript in preparation), see: Giovenzana GB.
Lay L.
Monti D.
Palmisano G.
Panza L.
Tetrahedron
1999,
55:
14123
14
Fein M.
Grafstein D.
Paustian JE.
Bobinski J.
Lichstein BM.
Myes N.
Schwartz NS.
Cohen MS.
Inorg. Chem.
1963,
2:
1115
15
Bagget N.
Smithson A.
Carbohydr. Res.
1982,
108:
59
16
Blériot Y.
Masaguet CF.
Charlwood J.
Winchester BG.
Lane AL.
Crook S.
Watkin DJ.
Fleet GWJ.
Tetrahedron
1997,
53:
15135
17
Barili PL.
Berti G.
Catelani G.
Colonna F.
Marra A.
Tetrahedron
Lett.
1986,
27:
2307
18 To a solution of 7 (1g;
3.3 mmol) in acetone (30 mL) were added under stirring 2,2- dimethoxypropane
(20 mL, 164 mmol; 50 equiv) and camphorsulfonic acid (77 mg, 0.33 mmol;
0.1 equiv). After 24 h stirring, NaHCO3 (2 g) was added
and after further 15 min stirring the mixture was filtered on celite.
The oil (crude 11) obtained after evaporation
of the volatiles was dissolved in methanol (50 mL) containing AcOH
(170 µL of 60% aqueous solution) and stirred at
50 °C for 80 min then cooled rapidly to r.t. Sodium hydrogen
carbonate (2 g) was added and the solution was stirred for 15 min
before filtration. Compound 12 (1.010 g,
3 mmol 90%) was obtained pure after column chromatography
(silica gel, CH2Cl2/CH3OH:
95/5) as a white foam 1H NMR (300 MHz,
CDCl3): 6.57 (l s, 1 H, NH); 6.04 (d, J
1,2 = 3.7
Hz, 1 H, H-1); 4.60-4.50 (m, 2 H); 4.30-4.11 (m, 6 H);
1.49 (s, 3 H, CH3); 1.42 (s, 3 H, CH3); 1.39
(s, 3 H, CH3); 1.32 (s, 3 H, CH3). 13C
NMR (75 MHz, CDCl3): 169.3 (C-6); 112.1 [C(CH3)2)];
107.8 (C-1); 101.0 [C(CH3)2];
83.0; 82.2; 80.3 (C-2′, C-3′); 78.6; 74.2; 71.2; 50.3
(C-4′); 28.8 (C-1′); 26.5 (CH3); 26.0
(CH3); 23.9 (CH3); 23.2 (CH3).
19 Mesylate 13 was
obtained conventionally (triethylamine, mesyl chloride, 2.2 equiv
each, in CH2Cl2, 2 h, 98%). 1H NMR
(300 MHz, CDCl3): 6.53 (s l, 1 H, NH); 6.04 (d, J
1,2 = 3.7 Hz, 1
H, H-1); 4.90-4.85 (m, 2 H, W1/2 = 33
Hz); 4.60-4.50 (m, 2 H); 4.10-4.25 (m, 4 H); 3.12
(s, 3 H, H-1′′); 1.49 (s, 3 H, CH3);
1.43 (s, 3 H, CH3); 1.40 (s, 3 H, CH3); 1.32
(s, 3 H, CH3). 13C NMR (75
MHz, CDCl3): 169.8 (C-6); 112.4 [C(CH3)2];
106.5 (C-1); 101.3 [C(CH3)2];
85.6 (CCH2); 83.6; 79.3; 75.6 (CCH2); 74.9;
71.9; 57.6 (C-4′); 39.1 (C-1′′); 28.9
(C-1′); 27.2 (CH3); 26.6 (CH3); 24.6
(CH3); 23.9 (CH3).
20
Cundari S.
Dalpozzo R.
De Nino A.
Procopio A.
Sindona G.
Athanassopulos K.
Tetrahedron
1999,
55:
10155
21
Nabakka JM.
Harwell DE.
Knobler CB.
Hawthorne MF.
J.
Organomet. Chem.
1998,
550:
423
22 Amine 15 was
obtained by reaction of mesylate 13 with
25% aq. ammonia/dioxane (5/1) 35 °C,
80 min Yield: 95%. 1H NMR (300 MHz,
CDCl3): 6.56 (s l, 1 H, NH); 6.04 (d, J
1-2 = 3.7
Hz, 1 H, H-1); 4.59-4.55 (m, 2 H); 4.24-4.08 (m,
4 H); 3.46-3.44 (m, 2 H, J
app
= 2 Hz); 1.70 (s l,
2 H, NH2); 1.48 (s, 3 H, CH3); 1.43 (s, 3
H, CH3); 1.39 (s, 3 H, CH3); 1.32 (s, 3 H,
CH3). 13C NMR (75 MHz, CDCl3):
169.5 (C-6); 112.3 [C(CH3)2];
106.4 (C-1); 101.1 [C(CH3)2];
84.3; 83.6; 79.1; 74.8; 71.8 (C-2, C-3, C-4, C-5); 67,1; 31.6 (C-4′);
29.1 (C-1′); 27.1 (CH3); 26.6 (CH3);
24.6 (CH3); 23.8 (CH3).
23
N-Fmoc
amino acid 16: Condensation of amine 15 in CH2Cl2 with
commercially available benzyl ester of N-Fmoc glutamic
acid in the presence of 1 equiv of DCC: 82%. 1H NMR
(300 MHz, CDCl3): 7.75-7.26 (m, 13 H, H ar);
6.71 (s l, 1 H, NH); 6.59 (s l, 1 H, NH); 6.04 (dapp, J
app
= 7.95
Hz, NH); 6.00 (dapp, J
app
= 3.7 Hz, 1 H, H-1);
5.15 [s, 2 H, CH2 (Bn)];.4.58-3.98
(m, 12 H); 2.50-1.50 (m l, 4 H); 1.44 (s, CH3);
1.38 (s, CH3); 1.34 (s, CH3); 1.29 (s, CH3). 13C
NMR (75 MHz, CDCl3): 171.9 (C-5′′);
169.7 (C-6); 156.3 [OC(O)NH]; 143.9, 143.7, 141.3
(Cquat Fmoc); 135.2 (OCH2C); 128.6; 128.5;
128.3; 127.7; 127.1; 125.1; 120.0; 112.3 [C(CH3)2];
106.3 (C-1); 101.2 [C(CH3)2];
83.5; 79.4; 79.3; 78.2; 77.6; 74.8; 71.8; 67,.2 (OCH2CH);
67.0 (OCH2CH); 53.7 (C-2′′); 47.1 (OCH2CH);
32.0; 29.2; 28.9; 27.9; 27.0 (CH3); 26.5 (CH3);
24.4 (CH3); 23.7 (CH3).
24 Carborane 17:
Under argon, a solution of decaborane (20 mg; 0.17 mmol, 1.3 equiv)
in toluene (2 mL) and acetonitrile (68 µL; 1.3 mmol, 10
equiv) was heated at 110 °C for 1 h then cooled to r.t.
before the addition of 16 (100 mg; 0.13 mmol).
The mixture was stirred at reflux for 5 h and methanol (0.5 mL)
was added to destroy the excess of decaborane. After evaporation
of the volatiles, column chromatography on silica gel (CH2Cl2/EtOAc:
8.5/1.5) gave carborane 17 (50
mg, 46%) as a white powder. 1H NMR
(300 MHz, CDCl3): 7.74 (dapp, J
app = 7.5 Hz, 2
H); 7.58 (dapp,
J
app = 7.2
Hz, 2 H); 7.5-7.2 (m, 11 H); 6.00 (d, J = 3.6
Hz, 1 H, H-1); 5.87 (d, J = 7.9
Hz, 1 H, NH); 5.17 (s l, 2 H, CCH2O); 4.55-4.08
(m, 12 H); 2.28-2.02 (m); 1.44 (s, CH3); 1.39
(s, CH3); 1.36 (s, CH3); 1.28 (s, CH3). 13C
NMR
(75 MHz, CDCl3): 172.4 (C-1′′);
171.7 (NHCO); 170;6 (NHCO); 156.6 [OC(O)NH]; 143.9;
143.7; 141.4 (Cquat Fmoc); 135.2 (OCH2C);
128.7; 128.6; 128.4; 127.8; 127.2; 125.2; 120.1; 112.6 [C(CH3)2];
106.5 (C-1); 101.6 [C(CH3)2];
83.5; 81.0 (CB); 79.7; 78.2; 75.1; 71.8; 67.5 (OCH2CH);
67.2 (OCH2CH); 53.6 (C-2′′); 47.2 (OCH2CH); 42.0
(CH2N); 41.1 (CH2N); 32.0; 28.4; 27.1 (CH3);
26.6 (CH3); 24.2 (CH3); 23.7 (CH3).
Anal. C43H57B10N3O11-0.25 CH2Cl2.
Calcd.: C 56.39, H 6.29, B 11.73, N 4.56; found C 56.48, H 6.35,
B 11.75, N 4.55. MS (electrospray):
(M + Na)+ centered
at m/z = 923.5 (cluster
from m/z = 919.5 to
926.5 with relative intensities matching the calculated spectrum
for C43H57B10N3O11).
25 For a synthesis of 10B
enriched decaborane, see: Adams L.
Tomlison S.
Wang J.
Hosmane SN.
Maguire JA.
Hosmane NS.
Inorg. Chem. Commun.
2002,
5:
765
For some reviews about ‘chemistry
and BNCT’, see:
26a
Hawthorne MF.
Angew. Chem., Int. Ed. Engl.
1993,
32:
950
26b
Morin C.
Tetrahedron
1994,
50:
12521
26c
Soloway AH.
Tjarks W.
Barnum BA.
Rong F.-G.
Barth RF.
Codogni IW.
Wilson JG.
Chem. Rev.
1998,
98:
1515