RSS-Feed abonnieren
DOI: 10.1055/s-2003-40864
Synthesis of 5-Acylindoles via Regioselective Acylation of 3-Trifluoroacetylindole
Publikationsverlauf
Publikationsdatum:
24. Juli 2003 (online)
Abstract
5-Acylindoles were synthesized by regioselective acylation of 3-trifluoroacetylindole with acyl chloride under the catalysis of Lewis acids, followed by hydrolysis of trifluoroacetyl and decarboxylation. Polar solvents were beneficial to the acylation and most of the Lewis acids tested showed good catalytic activities.
Key words
regioselectivity - acylation - 3-trifluoroacetylindole - 5-acylindole-3-carboxylic acid - 5-acylindole
- 1
Hibino S.Choshi T. Nat. Prod. Rep. 2002, 19: 148 - 2
Steele JCP.Veitch NC.Kite CG.Simmonds MSJ.Warhurst DC. J. Nat. Prod. 2002, 65: 85 - 3
Austin JF.Macmillan DWC. J. Am. Chem. Soc. 2002, 124: 1172 - 4
Szmuszkovicz J.Anthony WC. J. Org. Chem. 1960, 25: 857 - 5
Nicolaou I.Zaher N.Demopoulos VJ. Org. Prep. Proced. Int. 2002, 34: 501 - 6
Sundberg RJ. Indoles Academic Press; London: 1996. - 7
Nakatsuka S.Teranishi K.Goto T. Tetrahedron Lett. 1994, 35: 2699 - 8
Cruz RPA.Ottoni O.Abella CAM.Aquino LB. Tetrahedron Lett. 2001, 42: 1467 - 9
Murakami Y.Tani M.Tanaka K.Yokoyama Y. Chem. Pharm. Bull. 1988, 36: 2023 - 10
Tani M.Aoki T.Ito S.Matsumoto S.Hideshima M.Fukushima K.Nozawa R.Maeda T.Tashiro M.Yokoyama Y.Murakami Y. Chem. Pharm. Bull. 1990, 38: 3261 - 11
Hino T.Torisawa Y.Nakagawa M. Chem. Pharm. Bull. 1982, 30: 2349 - 12
Demopoulos VJ.Nicolaou I. Synthesis 1998, 1519 - 13
Heidi LH.Richard MS.Gordon WG. Tetrahedron Lett. 1998, 39: 3095 - 14
Barduhn AJ.Kobe KA. J. Chem. Soc. 1954, 1651 - 15
Piers E.Brown RK. Can. J. Chem. 1962, 40: 559 - 18
Nakatsuka S.Asano O.Uea K.Goto T. J. Heterocycles 1987, 26: 1471 - 19
Mahboobi S.Teller S.Pongratz H.Hufsky H.Sellmer A.Botzki A.Uecker A.Beckers T.Baasner S.Schachtele C.Uberall F.Kassack MU.Dove S.Bohmer F.-D. J. Med. Chem. 2002, 45: 1002
References
Friedel-Crafts Acylation of 3-Trifluoroacetylindole (1); General Procedure: To an ice cold solution of 1 (0.107 g, 0.5 mmol) in nitromethane (4 mL) was added acyl chloride (2, 1.5 mmol) under a N2 atmosphere, and the mixture was stirred for 15 min. Then AlCl3 (0.2 g, 1.5 mmol) was rapidly added and the reaction proceeded 4 h at r.t. To the reaction mixture H2O (5 mL) was added to quench the reaction. Nitromethane was removed under reduced pressure. The residue was resolved in EtOAc (30 mL) and washed with sat. aq NaHCO3 solution (three times) and NaCl solution(twice). The organic layer was dried over Na2SO4 and evaporated under reduced pressure to give a solid residue, which was purified by silica gel column chromatography with petroleum ether/acetone or petroleum ether/EtOAc as eluent to afford the acylated products.
17
Acylated Indole
Compounds:
A mixture of 5-acetyl-3-trifluoroacetylindole
(3a) and 6-acetyl-3-trifluoroacetylindole
(4a) (72:28) was obtained by chromatography
in total yield 85%. Recrystallization of the mixture from
EtOAc resulted in pure 3a, but pure 4a could not be obtained.
Compound 3a: Mp 195-196 °C (EtOAc).
ESI-MS (negative mode): m/z = 254 [(M - 1)-],
255 [(M)-]. IR (KBr): 3222, 1676,
1642, 1439, 1376, 1276, 1190, 1142, 896 cm-1. 1H NMR
(400 MHz, CD3COCD3): δ = 11.86
(br s, 1 H, N-H), 8.97 (dd, 1 H, J = 2.0
Hz, 0.8 Hz, H-4), 8.54 (m, 1 H, H-2), 8.02 (dd, 1 H, J = 8.8 Hz,
2.0 Hz, H-6), 7.73 (dd, 1 H, J = 8.8 Hz,
0.8 Hz, H-7), 2.68 (s, 3 H, CH3).
Compound 4a: The 1H NMR data
of 4a came from the 1H NMR
spectra of the mixture of 3a and 4a. 1H NMR (400 MHz,
CD3COCD3): δ = 11.92 (br
s, 1 H, N-H), 8.61 (m, 1 H, H-2); 8.37 (dd, 1 H, J = 8.8
Hz, 0.8 Hz, H-4), 8.29 (dd, 1 H, J = 2.0
Hz, 0.8 Hz, H-7), 8.02 (dd, 1 H, J = 8.8
Hz, 2.0 Hz, H-5), 2.66 (s, 3 H, CH3).
7-Acetyl-3-trifluoroacetylindole (5a): Mp 173-174 °C (petroleum
ether:EtOAc = 6:1). ESI-MS (negative
mode): m/z = 254 [(M - 1)-],
255 [(M)-]. IR (KBr): 3312,
2924, 1674, 1658, 1521, 1431, 1364, 1269, 1198, 895 cm-1. 1H NMR
(400 MHz, CD3COCD3): δ = 12.03
(br s, 1 H, N-H), 8.56 (dd, 1 H, J = 8.0
Hz, 0.8 Hz, H-4), 8.41 (m, 1 H, H-2), 8.09 (dd, 1 H, J = 8.0 Hz,
0.8 Hz, H-6), 7.49 (t, 1 H, J = 8.0 Hz,
H-5), 2.73 (s, 3 H, CH3).
5-Chloroacetyl-3-trifluoroacetylindole (3b): Mp 231-232 °C (petroleum
ether:acetone = 5:1); ESI-MS (negative mode): m/z = 288 [(M - 1)-],
290 [(M + 1)-]. IR
(KBr): 3238, 2924, 1684, 1667, 1139, 895 cm-1. 1H
NMR (500 MHz, CD3COCD3): δ = 11.92
(br s, 1 H, N-H), 8.98 (s, 1 H, H-4), 8.56 (s, 1 H, H-2), 8.03 (dd,
1 H, J = 8.5
Hz, 2.0 Hz, H-6), 7.77 (d, 1 H, J = 8.5
Hz, H-7), 5.10 (s, 2 H, CH2).
6-Chloroacetyl-3-trifluoroacetylindole (4b): Mp 198-199 °C (petroleum
ether:acetone = 5:1). ESI-MS (negative mode: m/z = 288 [(M - 1)-],
290 [(M + 1)-]. IR
(KBr): 3315, 2925, 1674, 1446, 1269, 1147, 892, 728 cm-1. 1H
NMR (400 MHz, CD3COCD3): δ = 12.02
(br s, 1 H, N-H), 8.63 (m, 1 H, H-2), 8.40 (dd, 1 H, J = 8.4 Hz,
0.4 Hz, H-4), 8.34 (dd, 1 H, J = 1.6
Hz, 0.4 Hz, H-7), 8.04 (dd, 1 H, J = 8.4
Hz, 1.6 Hz, H-5), 5.09 (s, 2 H, CH2).
5-(
n
-Butyryl)-3-trifluoroacetylindole (3c): Mp 185-186 °C (petroleum
ether:acetone = 7:1). ESI-MS (negative mode): m/z = 282 [(M - 1)-],
283 [(M)-]. IR (KBr): 3230, 2966,
1664, 1638, 1524, 1439, 1380, 1205, 1139, 1077, 897 cm-1. 1H
NMR (400 MHz, CD3COCD3): δ = 11.85
(br s, 1 H, N-H), 8.98 (dd, 1 H, J = 1.6
Hz, 0.8 Hz, H-4), 8.54 (br s, 1 H, H-2), 8.03 (dd, 1 H, J = 8.4 Hz,
1.6 Hz, H-6), 7.72 (dd, 1 H, J = 8.4
Hz, 0.8 Hz, H-7), 3.10 (t, 2 H, J = 7.2
Hz, CH2), 1.77 (m, 2 H, J = 7.6
Hz, 7.2 Hz, CH2), 1.02 (t, 3 H, J = 7.6 Hz,
CH3).
5-(
iso
-Butyryl)-3-trifluoroacetylindole (3d): Mp 169-170 °C (petroleum
ether:EtOAc = 6:1). ESI-MS (negative mode): m/z = 282 [(M - 1)-],
283 [(M)-]. IR (KBr): 3249, 2975,
1659, 1615, 1525, 1465, 1385, 1345, 1276, 1138, 1075, 897 cm-1. 1H
NMR (400 MHz, CD3COCD3): δ = 11.86 (br
s, 1 H, N-H), 8.98 (dd, 1 H, J = 1.6
Hz, 0.8 Hz, H-4), 8.55 (m, 1 H, H-2), 8.03 (dd, 1 H, J = 8.4 Hz,
1.6 Hz, H-6), 7.74 (dd, 1 H, J = 8.4
Hz, 0.8 Hz, H-7), 3.78 (m, 1 H, CH), 1.21 (d, 6 H, J = 7.2
Hz, CH3).
5-Benzoyl-3-trifluoroacetylindole (3e): Mp 207-208 °C (petroleum
ether:EtOAc = 6:1). ESI-MS (negative
mode): m/z = 316 [(M - 1)-],
317 [(M)-]. IR (KBr): 3219,
3056, 2941, 1645, 896, 712 cm-1. 1H
NMR (500 MHz, CD3COCD3): δ = 11.91
(br s, 1 H, N-H), 8.76 (d, 1 H, J = 1.5 Hz,
H-4), 8.56 (br d, 1 H, J = 1.5
Hz, H-2), 7.87 (dd, 1 H, J = 8.0
Hz, 1.5 Hz, H-6), 7.82 (d, 2 H, J = 7.5
Hz, H-2′ and H-6′ in phenyl), 7.79 (d, 1 H, J = 8.5 Hz,
H-7), 7.67 (td, 1 H, J = 7.5,
1.5 Hz, H-4′ in phenyl), 7.57 (t, 2 H, J = 7.5
Hz, H-3′ and H-5′ in phenyl).
5-(4′-Methylbenzoyl)-3-trifluoroacetylindole (3f): Mp 225 °C (petroleum ether:acetone = 6:1).
ESI-MS (negative mode): m/z = 330 [(M - 1)-],
331 [(M)-]. IR (KBr): 3363, 2925,
1679, 1642, 1604, 1525, 1437, 1312, 1288, 1192, 1142, 891, 758 cm-1. 1H
NMR (500 MHz, CD3COCD3): δ = 11.90
(br s, 1 H, N-H), 8.74 (d, 1 H, J = 1.5
Hz, H-4), 8.55 (m, 1 H, H-2), 7.85 (dd, 1 H, J = 8.5
Hz, 1.5 Hz, H-6), 7.78 (d, 1 H, J = 8.5
Hz, H-7), 7.73 (dd, 2 H, J = 7.5
Hz, 1.5 Hz, H-2′ and H-6′ in phenyl), 7.38 (dd,
2 H, J = 7.5 Hz, 1.5 Hz, H-3′ and
H-5′ in phenyl), 3.45 (s, 3 H, CH3).
5-(4′-Nitrobenzoyl)-3-trifluoroacetylindole (3g): The acylation of 1 with p-nitrobenzoyl chloride was catalyzed
by FeCl3 in nitromethane. The operation was the same
as the acetylation catalyzed by AlCl3.
Compound 3g: Mp 237-238 °C (petroleum ether:acetone = 6:1).
ESI-MS (negative mode): m/z = 361 [(M - 1)-],
362 [(M)-]. IR: 3222, 3055,
1651, 1619, 1521, 1435, 1193, 900, 849, 729, 687 cm-1. 1H
NMR (500 MHz, CD3COCD3): δ = 11.97
(br s, 1 H, N-H), 8.75 (d, 1 H, J = 1.5 Hz,
H-4), 8.59 (br d, 1 H, J = 1.0
Hz, H-2), 8.43 (dt, 2 H, J = 9.0
Hz, 2.0 Hz, H-3′ and H-5′ in phenyl), 8.05 (dt,
2 H, J = 9.0
Hz, 2.0 Hz, H-2′ and H-6′ in phenyl), 7.91 (dd,
1 H, J = 9.0
Hz, 1.5 Hz, H-6), 7.82 (d, 1 H, J = 9.0
Hz, H-7).
6-(4′-Nitrobenzoyl)-3-trifluoroacetylindole (4g): Mp 250 °C (petroleum ether:acetone = 6:1).
ESI-MS (negative mode): m/z = 361 [(M - 1)-],
362 [(M)-]. IR (KBr): 3358, 3129,
1656, 1617, 1521, 1350, 1283, 1193, 885, 848, 719 cm-1. 1H
NMR (500 MHz, CD3COCD3): δ = 11.92
(br s, 1 H, N-H), 8.64 (br d, 1 H, J = 1.5
Hz, H-2), 8.43 (d, 1 H, J = 8.5
Hz, H-4), 8.42 (dt, 2 H, J = 8.5
Hz, 2.0 Hz, H-3′ and H-5′ in phenyl), 8.14 (d, J = 1.5 Hz,
H-7), 8.05 (dt, 2 H, J = 8.5
Hz, 2.0 Hz, H-2′ and H-6′ in phenyl), 7.86 (dd,
1 H, J = 8.5
Hz, 1.5 Hz, H-5).
The acylation of 1 with
chloroacetyl chloride catalyzed by ionic liquid produced not only
5-acylated product 3b but also 6-acylated
isomer 4b. The procedure was as follows:
The mixture of 1-methyimidazole (5 mL, 0.062 mol) and excess n-butyl chloride (15 mL) was stirred
at reflux for 24 h under a N2 atmosphere. Superfluous n-butyl chloride was evaporated under
reduced pressure to give 8.96 g of
1-methyl-3-butylimidazolium
chloride (MeBuImCl), yield = 82%.
A dry flask was charged with 2.62 g of MeBuImCl (15 mmol). With
vigorous stirring AlCl3 (4 g, 30 mmol) was added to the
flask in four portions under a N2 atmosphere and a liquid
formed (MeBuImCl-AlCl3). When the ionic liquid
was cooled to r.t., 1 (0.107 g, 0.5 mmol)
was then dissolved in the ionic liquid, followed by adding chloroacetyl
chloride (2b, 1.5 mmol). Stirring was continued for
another 3 h and H2O was added slowly to quench the reaction.
The mixture was extracted by EtOAc. The following work-up was the
same as that of acetylation of 1 catalyzed
by AlCl3. The residue was chromatographed on a silica
gel colum with 5:1 petroleum ether:acetone to result in 3b (yield = 86%)
and 4b (yield = 4%).
Hydrolysis of
3a, 3c-f; General Procedure: To a aq 4.4 M KOH solution
was added 5-acyl-3-trifluoroacetylindole (3a, 3c-f,
1 mmol). The mixture was refluxed until 3 disappeared (0.5-2
h). The mixture was adjusted to pH = 5-6
with 5.5 M HCl(aq) to precipitate carboxylic acid, which was extracted with
EtOAc or n-butanol (3 × 20
mL). The combined extracts were washed with brine and dried (Na2SO4). Removal
of the solvent in vacuum gave a solid residue, which was purified
by silica gel column chromatography (petroleum ether:acetone = 2:1).
5-Acetylindole-3-carboxylic Acid (6a): Mp 198-200 °C (petroleum
ether:acetone = 2:1). ESI-MS (negative
mode): m/z = 202 [(M - 1)-],
203 [(M)-]. IR (KBr): 3210,
2925, 1681, 1646, 1449, 1311, 1176, 700 cm-1. 1H
NMR (600 MHz, DMSO-d
6): δ = 12.25
(s, 1 H, -COOH), 12.16 (s, 1 H, N-H), 8.66 (br s, 1 H, H-4), 8.14
(d, 1 H, J = 2.4
Hz, H-2), 7.82 (dd, 1 H, J = 8.4
Hz, 1.2 Hz, H-6), 7.55 (d, 1 H, J = 8.4 Hz,
H-7), 2.62 (s, 3 H, CH3).
5-
n
-Butyrylindole-3-carboxylic
Acid (6c): Mp 174-175 °C
(petroleum ether:acetone = 2:1). ESI-MS
(negative mode): m/z = 230 [(M - 1)-],
231 [(M)-]. IR (KBr): 3237, 2961,
1669, 1533, 1444, 1169 cm-1. 1H
NMR (600 MHz, DMSO-d
6): δ = 12.24
(s, 1 H, -COOH), 12.14 (br s, 1 H, N-H), 8.68 (br s, 1 H, H-4),
8.14 (d, 1 H, J = 2.9
Hz, H-2), 7.83 (dd, 1 H, J = 8.4
Hz, 1.6 Hz, H-6), 7.55 (d, 1 H, J = 8.4
Hz, H-7), 3.05 (t, 2 H, J = 7.2
Hz, CH2), 1.67 (m, 2 H, J = 7.2
Hz, CH2), 0.95 (t, 3 H, J = 7.2
Hz, CH3).
5-
iso
-Butyrylindole-3-carboxylic
Acid (6d): Mp 171-172 °C
(petroleum ether:acetone = 2:1). ESI-MS
(negative mode): m/z = 230 [(M)-].
IR (KBr): 3281, 2973, 1657, 1537, 1446, 1186, 1128, 759 cm-1. 1H
NMR (600 MHz, DMSO-d
6): δ = 12.10
(s, 2 H, -COOH and N-H), 8.67 (br s, 1 H, H-4), 8.12 (d, 1 H, J = 2.7 Hz,
H-2), 7.83 (dd, 1 H, J = 8.4
Hz, 0.9 Hz, H-6), 7.55 (d, 1 H, J = 8.4
Hz, H-7), 3.70 (t, 2 H, J = 6.6
Hz, CH), 1.14 (d, 6 H, J = 6.6
Hz, CH3).
5-Benzoylindole-3-carboxylic
Acid (6e): Mp 178-179 °C (petroleum
ether:acetone = 2:1). ESI-MS (negative
mode): m/z = 264 [(M)-],
220 [(M - 1 - CO2
-)].
IR (KBr): 3184, 2925, 1668, 1639, 1499, 1201, 1138, 705 cm-1. 1H
NMR (600 MHz, DMSO-d
6): δ = 12.23
(s, 1 H, -COOH), 12.10 (br s, 1 H, N-H), 8.44 (br s, 1 H, H-4),
8.17 (d, 1 H, J = 3.3
Hz, H-2), 7.73 (d, 2 H, J = 7.8
Hz, H-2′ and H-6′ in phenyl), 7.67 (d, 1 H, J = 8.4 Hz,
H-6), 7.66 (t, 1 H, J = 7.8
Hz, H-4′ in phenyl), 7.62 (d, 1 H, J = 8.4
Hz, H-7), 7.57 (t, 2 H, J = 7.8 Hz,
H-3′ and H-5′ in phenyl).
5-(4′-Methylbenzoyl)indole-3-carboxylic
Acid (6f): Mp 193-194 °C
(petroleum ether:acetone = 2:1). ESI-MS (negative
mode): m/z = 278 [(M - 1)-],
279 [(M)-]. IR (KBr): 3423,
3187, 2924, 1662, 1530, 1454, 1292, 1198, 1130, 759 cm-1. 1H
NMR (600 MHz, DMSO-d
6): δ = 12.21
(s, 1 H, -COOH), 12.08 (br s, 1 H, N-H), 8.42 (br s, 1 H, H-4),
8.16 (d, 1 H, J = 2.4
Hz, H-2), 7.65 (d, 3 H, J = 7.8
Hz, H-6 and H-2′ and H-6′ in phenyl), 7.61 (d,
1 H, J = 8.4
Hz, H-7), 7.38 (d, 2 H, J = 7.8
Hz, H-3′ and H-5′ in phenyl), 2.42 (s, 3 H, CH3).
Decarboxylation;
General Procedure:
Quinoline (0.5 mL), 6 (0.5
mmol) and its cupric salt (0.02 mmol) were added to a flask fitted
with a magnetic bar and a reflux condenser connected to an oil bubbler.
The mixture was heated until gas evolution (CO2) occurred
and kept at this temperature until gas evolution ceased (45-120
min). The reaction mixture was cooled to r.t. To the mixture was added
20 mL EtOAc and washed with 1 N HCl(aq) (three times). The organic
layer was washed with sat. aq NaHCO3 solution (three
times), brine(once) and dried over Na2SO4. Removal
of the solvent gave a solid residue, which was purified by silica
gel column chromatography (petroleum ether:acetone = 8:1
to 2:1).
5-Acetylindole (7a): Mp 69-71 °C (petroleum ether:acetone = 8:1).
ESI-MS (negative mode): m/z = 158 [(M - 1)-],
159 [(M)-]. IR (KBr): 3271,
1661, 1600, 1429, 1351, 1273, 914, 771, 731 cm-1. 1H
NMR (600 MHz, CDCl3): δ = 10.65 (br
s, 1 H, N-H), 8.35 (s, 1 H, H-4), 7.83 (dd, 1 H, J = 8.4
Hz, 1.5 Hz, H-6), 7.52 (d, 1 H, J = 8.4
Hz, H-7), 7.48 (t, 1 H, J = 2.2
Hz, H-2), 6.66 (br d, 1 H, J = 2.2 Hz,
H-3), 2.62 (s, 3 H, CH3).
5-
n
-Butyrylindole (7c): Mp 104-105 °C (petroleum ether:acetone = 8:1).
ESI-MS (negative mode): m/z = 186 [(M - 1)-].
IR (KBr): 3269, 2963, 1664, 1605, 1380, 1367, 1329, 1223, 1154,
892, 759 cm-1. 1H
NMR (600 MHz, CDCl3): δ = 10.48 (br
s, 1 H, N-H), 8.37 (br d, 1 H, J = 0.8 Hz,
H-4), 7.84 (dd, 1 H, J = 8.4
Hz, 1.0 Hz, H-6), 7.52 (d, 1 H, J = 8.4
Hz, H-7), 7.47 (t, 1 H, J = 2.8
Hz, 2.4 Hz, H-2), 6.66 (br d, 1 H, J = 2.0
Hz, H-3), 3.06 (t, 2 H, J = 7.2
Hz, CH2), 1.77 (m, 2 H, J = 7.2
Hz, CH2), 1.01 (t, 3 H, J = 7.2 Hz,
CH3).
5-
iso
-Butyrylindole (7d): Mp 65-66 °C (petroleum ether:acetone = 8:1).
ESI-MS (negative mode): m/z = 186 [(M - 1)-].
IR (KBr): 3300, 2975, 1663, 1603, 1430, 1383, 1346, 1228, 1139,
1097, 1007, 749 cm-1. 1H
NMR (600 MHz, CDCl3): δ = 10.65 (br
s, 1 H, N-H), 8.38 (s, 1 H, H-4), 7.85 (dd, 1 H, J = 8.4
Hz, 1.5 Hz, H-6), 7.54 (d, 1 H, J = 8.4 Hz,
H-7), 7.48 (t, 1 H, J = 2.4
Hz, H-2), 6.66 (d, 1 H, J = 2.4 Hz,
H-3), 3.78 (m, 1 H, J = 7.2
Hz, CH), 1.20 (d, 6 H, J = 7.2 Hz,
CH3).
5-Benzoylindole (7e): Mp 148-149 °C (petroleum ether:acetone = 5:1).
ESI-MS (negative mode): m/z = 220 [(M - 1)-].
IR (KBr): 3292, 1623, 1607, 1571, 1322, 880, 737 cm-1. 1H
NMR (600 MHz, CDCl3): δ = 10.72 (br
s, 1 H, N-H), 8.10 (br s, 1 H, H-4), 7.80 (dd, 2 H, J = 7.4 Hz,
1.2 Hz, H-2′ and H-6′ in phenyl), 7.71 (dd, 1
H, J = 8.4
Hz, 1.5 Hz, H-6), 7.66 (t, 1 H, J = 7.4
Hz, H-4′ in phenyl), 7.59 (t, 2 H, J = 7.4
Hz, H-3′ and H-5′ in phenyl), 7.57 (d, 1 H, J = 8.4 Hz,
H-7), 7.51 (t, 1 H, J = 2.4
Hz, H-2), 6.67 (br d, 1 H, J = 2.4
Hz, H-3).
5-(4′-Methylbenzoyl)indole (7f): Mp 168-169 °C (petroleum
ether:acetone = 8:1). ESI-MS (negative
mode): m/z = 234 [(M - 1)-].
ESI-MS (positive mode): m/z = 258 [(M + Na)+],
274 [(M + K)+]. IR
(KBr): 3235, 1631, 1606, 1329, 1316, 1177, 754 cm-1. 1H
NMR (600 MHz, CDCl3): δ = 10.70 (br
s, 1 H, N-H), 8.08 (br s, 1 H, H-4), 7.71 (d, 2 H, J = 7.8
Hz, H-2′ and H-6′ in phenyl), 7.69 (dd, 1 H, J = 8.4 Hz,
1.2 Hz, H-6), 7.59 (d, 1 H, J = 8.4
Hz, H-7), 7.51 (t, 1 H, J = 2.2
Hz, H-2), 7.38 (d, 2 H, J = 7.8
Hz, H-3′ and H-5′ in phenyl), 6.66 (br d, 1 H, J = 2.2 Hz,
H-3), 2.47 (s, 3 H, CH3).