Rofo 2003; 175(8): 1042-1050
DOI: 10.1055/s-2003-40920
Übersicht
© Georg Thieme Verlag Stuttgart · New York

Prächirurgische funktionelle Magnetresonanztomographie (fMRT) bei Patienten mit rolandischen Hirntumoren: Indikation, Untersuchungsstrategie, Möglichkeiten und Grenzen der klinischen Anwendung

Preoperative Functional Magnetic Resonance Tomography (FMRI) in Patients with Rolandic Brain Tumors: Indication, Investigation Strategy, Possibilities and Limitations of Clinical ApplicationC.  Stippich1 , B.  Kress1 , H.  Ochmann1 , V.  Tronnier2 , K.  Sartor1
  • 1Abteilung Neuroradiologie, Neurologische Klinik
  • 2Neurochirurgische Klinik, Universitätsklinikum Heidelberg
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
29. Juli 2003 (online)

Zusammenfassung

Die prächirurgische funktionelle Magnetresonanztomographie (fMRT) bildet motorische und somatosensible Hirnaktivierung nicht invasiv in Relation zu rolandischen Tumoren ab und erfasst plastische Veränderungen. Funktionelle Landmarken ermöglichen die Prüfung der Operationsindikation sowie die Planung und Durchführung funktionsschonender Resektionen, selbst wenn morphologische Landmarken tumorbedingt nicht mehr identifizierbar sind. Derzeit kann die fMRT noch nicht als klinisch etabliertes diagnostisches Verfahren angesehen werden, da praktikable Stimulationssysteme, standardisierte Untersuchungsprotokolle und für medizinische Anwendungen zugelassene Auswertungsprogramme fehlen. In dieser Arbeit werden, nach einer kurzen Rekapitulation der funktionellen und bildmorphologischen Neuroanatomie, die Indikationen zur prächirurgischen fMRT bei Patienten mit rolandischen Hirntumoren dargestellt. Ein robustes Basisprotokoll erlaubt zuverlässig prächirurgische fMRT-Untersuchungen während kontralateraler Handbewegungen auf klinischen MR-Tomographen mit Feldstärken ab 1,0 Tesla. Optimierte Untersuchungsstrategien und praktikable Stimulationsmodalitäten werden für Patienten mit „handferner” rolandischer Tumorlokalisation, vorbestehenden sensorimotorischen Defiziten oder mangelnder Kooperationsfähigkeit vorgestellt und in der Anwendung durch Fallbeispiele veranschaulicht. Möglichkeiten und Grenzen der klinischen Anwendung werden aufgezeigt und diskutiert.

Abstract

Preoperative functional magnetic resonance imaging (fMRI) localizes the primary motor and somatosensory cortex in relation to rolandic brain tumors and determines plastic cortical reorganization. Functional landmarks help to assess the indication for surgery and to plan for safer surgical procedures that protect the functional cortex during resection even when morphologic landmarks are no longer identifiable on anatomic images. Despite its successful application, preoperative fMRI has not yet reached the status of an established clinical diagnostic procedure since special stimulation systems, standardized fMRI protocols and medically approved software are still lacking. Following a brief review of the image display of the functional and morphologic anatomy, the different indications for preoperative fMRI in patients with rolandic brain tumors are presented. A robust preoperative protocol enables clinical MR units with magnetic field strengths of 1.0 Tesla or higher to perform reliable fMRI during contralateral hand movements. Optimized investigation strategies and stimulation modalities are proposed for patients with rolandic tumors distant from the cortical hand representation, for patients with preexisting sensorimotor deficits and for patients with poor compliance. Representative cases illustrate the clinical application. Possibilities and limitations of preoperative fMRI are presented and discussed.

Literatur

  • 1 Naidich T P, Valavanis A G, Kubik S. Anatomic relationships along the low-middle convexity: part I - normal specimens and magnetic resonance imaging.  Neurosurgery. 1995;  36 517-532
  • 2 Naidich T P, Brightbill T C. Systems for localizing fronto-parietal gyri and sulci on axial CT and MRI.  Int J Neuroradiol. 1996;  2 313-338
  • 3 Naidich T P, Hof P R, Yousry T A, Yousry I. The motor cortex: anatomic substrates of function.  Neuroimaging Clin N Am. 2001;  11 171-193
  • 4 Yousry T A, Schmid U D, Schmidt D, Hagen T, Jassoy A, Reiser M F. The central sulcus vein: a landmark for identification of the central sulcus using functional magnetic resonance imaging.  J Neurosurg. 1996;  85 608-617
  • 5 Yousry T A, Schmid U D, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P. Localization of the motor hand area to a knob on the precentral gyrus. A new landmark.  Brain. 1997;  120 141-157
  • 6 Penfield W, Boldrey E. Somatoic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation.  Brain. 1937;  60 389-443
  • 7 Lotze M, Erb M, Flor H, Hülsmann E, Godde B, Grodd W. fMRI evaluation of somatotopic representation in human primary motor cortex.  Neuroimage. 2000;  11 473-481
  • 8 Rao S M, Binder J R, Hammeke T A, Bandettini P A, Bobholz J A, Frost J A, Myklebust B M, Jacobson R D, Hyde J S. Somatotopic mapping of the human primary motor cortex with functional magnetic resonance imaging.  Neurology. 1995;  45 919-924
  • 9 Stippich C, Hofmann R, Kapfer D, Hempel E, Heiland S, Jansen O, Sartor K. Somatotopic mapping of the human primary somatosensory cortex by fully automated tactile stimulation using functional magnetic resonance imaging (fMRI).  Neurosci Lett. 1999;  277 25-28
  • 10 Stippich C, Ochmann H, Sartor K. Somatotopic mapping of the human primary sensorimotor cortex during motor imagery and motor execution by functional magnetic resonance imaging (fMRI).  Neurosci Lett. 2002;  331 50-54
  • 11 Wunderlich G, Knorr U, Herzog H. et al . Precentral glioma location determines the displacement of cortical hand representation.  Neurosurgery. 1998;  42 18-27
  • 12 Fandino J, Kollias S S, Wieser H G, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex.  J Neurosurg. 1999;  91 238-250
  • 13 Bittar R G, Olivier A, Sadikot A F, Andermann F, Reutens D C. Cortical motor and somatosensory representation: effect of cerebral lesions.  J Neurosurg. 2000;  92 242-248
  • 14 Carpentier A C, Constable R T, Schlosser M J, de Lotbiniere A, Piepmeier J M, Spencer D D, Awad I A. Patterns of functional magnetic resonance imaging activation in association with structural lesions in the rolandic region: a classification system.  J Neurosurg. 2001;  94 946-954
  • 15 Duffau H, Sichez J P, Lehericy S. Intraoperative unmasking of brain redundant motor sites during resection of a precentral angioma: evidence using direct cortical stimulation.  Ann Neurol. 2000;  47 132-135
  • 16 Duffau H. Acute functional reorganisation of the human motor cortex during resection of cerebral lesions: a study using intraoperative brain mapping.  J Neurol Neurosurg Psychiatry. 2001;  70 506-513
  • 17 Krings T, Topper R, Willmes K, Reinges M H, Gilsbach J M, Thron A. Activation in primary and secondary motor areas in patients with CNS neoplasms and weakness.  Neurology. 2002;  58 381-390
  • 18 Leherici S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier A, Auliac S, Clemenceau S, Sichez J P, Bitar A, Valery C A, van Effenterre R, Faillot T, Srour A, Fohanno D, Philippon J, Le Bihan D, Marsault C. Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors.  J Neurosurg. 2000;  92 589-598
  • 19 Jack C R, Thompson R M, Butts R K, Sharbrough F W, Kelly P J, Hanson D P, Riederer S J, Ehmann R L, Hangiandreou N J, Cascino G D. Sensory motor cortex: correlation of presurgical mapping with functional MR and invasive cortical mapping.  Radiology. 1994;  190 85-92
  • 20 Yousry T A, Schmid U D, Jassoy A G, Schmidt D, Eisner W E, Reulen H J, Reiser M F, Lissner J. Topography of the cortical motor hand area: prospective study with functional MR imaging and direct motor mapping at surgery.  Radiology. 1995;  195 23-29
  • 21 Stippich C, Freitag P, Kassubek J, Sörös P, Kamada K, Kober H, Scheffler K, Hopfengärtner R, Bilecen D, Radü E W, Vieth J B. Motor, somatosensory and auditory cortex localization by fMRI and MEG.  NeuroReport. 1998;  9 1953-1957
  • 22 Kober H, Nimsky C, Moller M, Hastreiter P, Fahlbusch R, Ganslandt O. Correlation of sensorimotor activation with functional magnetic resonance imaging and magnetoencephalography in presurgical functional imaging: a spatial analysis.  Neuroimage. 2001;  21 229-235
  • 23 Krings T, Buchbinder B R, Butler W E, Chiappa K H, Jiang H J, Cosgrove G R, Rosen B R. Functional magnetic resonance imaging and transcranial magnetic stimulation: complementary approaches in the evaluation of cortical motor function.  Neurology. 1997;  48 1006-1416
  • 24 Baumann S B, Noll D C, Kondziolka D S, Schneider W, Nichols T E, Mintun M A, Lewine J D, Yonas H, Orrison W W, Sclabassi R J. Comparison of functional magnetic resonance imaging with positron emission tomography and magnetoencephalography to identify the motor cortex in a patient with an arteriovenous malformation.  J Image Guid Surg. 1995;  1 191-197
  • 25 Bittar R G, Olivier A, Sadikot A F, Andermann F, Pike G B, Reutens D C. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography.  J Neurosurg. 1999;  91 915-921
  • 26 Braun V, Dempf S, Tomczak R, Wunderlich A, Weller R, Richter H P. Multimodal cranial neuronavigation: direct integration of functional magnetic resonance imaging and positron emission tomography data: technical note.  Neurosurgery. 2001;  48 1178-1181
  • 27 Coenen V A, Krings T, Mayfrank L, Polin R S, Reinges M H, Thron A, Gilsbach J M. Threedimensional visualization of the pyramidal tract in a neuronavigation system during brain tumor surgery: first experiences and technical note.  Neurosurgery. 2001;  49 86-92
  • 28 Inoue T, Shimizu H, Yoshimoto T. Imaging the pyramidal tract in patients with brain tumors.  Clin Neurol Neurosurg. 1999;  101 4-10
  • 29 Krings T, Reinges M H, Thiex R, Gilsbach J M, Thron A. Function and diffusion-weighted magnetic resonance images of space-occupying lesions affecting the motor system: imaging the motor cortex and pyramidal tracts.  J Neurosurg. 2001;  95 816-824
  • 30 Stippich C, Heiland S, Tronnier V, Mohr A, Sartor K. Klinische funktionelle Magnetresonanztomographie (fMRT): Physiologische Grundlagen, technische Aspekte und Anforderungen für die klinische Anwendung.  Fortschr Röntgenstr. 2002;  174 43-49
  • 31 Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland P E. Two different areas within the primary motor cortex of man.  Nature. 1996;  382 805-807
  • 32 Kretschmann H J, Weinrich W (eds). Dreidimensionale Computergraphik neurofunktioneller Systeme. Stuttgart; Thieme 1996: 42 - 54-72 - 88
  • 33 Mohamed F B, Tracy J I, Faro S H, Emperado J, Koenigsberg R, Pinus A, Tsai F Y. Investigation of alternating and continuous experimental task designs during single finger opposition fMRI: a comparative study.  J Comput Assist Tomogr. 2000;  24 935-941
  • 34 Yetkin F Z, McAuliffe T L, Cox R, Haughton V M. Test-retest precision of functional MR in sensory and motor task activation.  Am J Neuroradiol. 1996;  17 95-98
  • 35 Papke K, Hellmann T, Renger B, Morgenroth C, Knecht S, Schuierer G, Reimer P. Clinical applications of functional MRI at 1.0 T: motor and language studies in healthy subjects and patients.  Eur Radiol. 1999;  21 211-220
  • 36 van der Kallen B F, van Erning L J, van Zuijlen M W, Merx H, Thijssen H O. Activation of the sensorimotor cortex at 1.0 T: comparison of echo-planar and gradient-echo imaging.  Am J Neuroradiol. 1998;  19 1099-1104
  • 37 Stippich C, Kapfer D, Hempel E, Heiland S, Sartor K. Robust localization of the contralateral precentral gyrus in hemiparetic patients using the unimpaired ipsilateral hand: a clinical functional magnetic resonance imaging protocol.  Neurosci Lett. 2000;  285 155-159
  • 38 Marquart M, Birn R, Haughton V. Single- and multiple event paradigms for identification of motor cortex activation.  Am J Neuroradiol. 2000;  21 94-98
  • 39 Kurth R, Villringer K, Mackert B M, Schwiemann J, Braun J, Curio G, Villringer A, Wolf K J. FMRI assessment of somatotopy in human Brodmann area 3b by electrical finger stimulation.  NeuroReport. 1998;  9 207-212
  • 40 Hammeke T A, Yetkin F Z, Mueller W M, Morris G L, Haughton V M, Rao S M, Binder J R. Functional magnetic resonance imaging of somatosensory stimulation.  Neurosurgery. 1994;  35 677-681
  • 41 Hajnal J V, Mayers R, Oatridge A, Schwieso J E, Young J R, Bydder G M. Artifacts due to stimulus correlated motion in functional imaging of the brain.  Magn Reson Med. 1994;  31 283-291
  • 42 Hoeller M, Krings T, Reinges M H, Hans F J, Gilsbach J M, Thron A. Movement artefacts and MR BOLD signal increase during different paradigms für mapping the sensorimotor cortex.  Acta Neurochir. 2002;  144 279-284
  • 43 Seto E, Sela G, Mc Ilroy W E, Black S E, Staines W R, Bronskill M J, Mc Intosh A R, Graham S J. Quantifying head motion associated with motor tasks used in fMRI.  Neuroimage. 2001;  14 284-297
  • 44 Boxerman J L, Bandettini P A, Kwong K K, Baker J R, Davis T L, Rosen B R, Weisskoff R M. The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo.  Magn Reson Med. 1995;  34 4-10
  • 45 Hlustik P, Noll D C, Small S L. Suppression of vascular artifacts in functional magnetic resonance images using MR angiograms.  Neuroimage. 1998;  7 224-231
  • 46 Krings T, Erberich S G, Roessler F, Reul J, Thron A. MR blood oxygenation level-dependent signal differences in parenchymal and large draining vessels: implications for functional MR imaging.  Am J Neuroradiol. 1999;  20 1907-1914
  • 47 Holodny A I, Schulder M, Liu W C, Maldjian J A, Kalnin A J. Decreased BOLD functional MR activation of the motor and somatosensory cortices adjacent to a glioblastome multiforme: implications for image-guided neurosurgery.  Am J Neuroradiol. 1999;  20 609-612
  • 48 Holodny A I, Schulder M, Liu W C, Wolko J, Maldjian J A, Kalnin A J. The effect of brain tumors on BOLD functional MR imaging activation in the adjacent motor cortex: implications for image guided neurosurgery.  Am J Neuroradiol. 2000;  21 1415-1422
  • 49 Schreiber A, Hubbe U, Ziyeh S, Hennig J. The influence of gliomas and nonglial space-occupying lesions on blood-oxygen-level-dependent contrast enhancement.  Am J Neuroradiol. 2000;  21 1055-1063
  • 50 Schmithorst V J, Dardzinski B J, Holland  S K. Simultaneous correction of ghost and geometric distortion artifacts in EPI using a multiecho reference scan.  IEEE Trans Med Imaging . 2001;  20 535-539
  • 51 Friston K J, Frith C D, Liddle P F, Dolan R J, Lammertsma A A, Frackowiack R SJ. The relationship between global and local changes in PET scans.  J Cereb Blood Flow Metab. 1990;  10 458-466
  • 52 Friston K J, Frith C D, Liddle P F, Frackowiack R SJ. Comparing functional (PET) images: The assessment of significant change.  J Cereb Blood Flow Metab. 1991;  11 690-699
  • 53 Cox R W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages.  Comput Biomed Res. 1996;  29 162-173
  • 54 Gold S, Christian B, Arndt S, Zeien G, Cizaldo T, Johnson D L, Flaum M, Andreasen N C. Functional MRI statistical software packages: a comparative analysis.  Hum Brain Mapp. 1998;  6 73-84

Dr. med. C. Stippich

Abt. Neuroradiologie, Neurologische Klinik, Ruprecht-Karls-Universität

Im Neuenheimer Feld 400

69112 Heidelberg

Telefon: + 06221 567566

Fax: + 06221 564673

eMail: christoph_stippich@med.uni-heidelberg.de