Subscribe to RSS
DOI: 10.1055/s-2003-40969
Noninvasive Assessment of Neoplastic Angiogenesis: The Role of Magnetic Resonance Imaging
Publication History
Publication Date:
30 July 2003 (online)
ABSTRACT
The study of the effect of angiogenesis inhibitors on tumors is limited by our ability to assess their effect in vivo. Approaches that are currently employed have significant limitations. An ideal approach would employ a widely available noninvasive technology that can be used repeatedly to assess the antiangiogenic effect on the same lesions in a serial fashion. We describe here a specialized magnetic resonance imaging (MRI)-based technique that we employ in the study of angiogenesis of brain tumors. This technique, called relative cerebral blood volume (rCBV) mapping, is a noninvasive technique that adds just a few minutes to the conventional MRI study of a human brain tumor in the clinical setting. We hope that such a technique will serve as a model for developing new imaging techniques for the assessment of angiogenesis modulation in other tumor settings. We describe the technical basis and some examples of using rCBV mapping in neoplastic angiogenesis assessment, including a discussion of current limitations and future directions.
KEYWORDS
Angiogenesis - magnetic resonance imaging - tumor imaging - glioblastoma multiforme
REFERENCES
- 1 Folkman J, Mulliken J B, Ezekowitz R A. Antiangiogenic Therapy of Hemangiomas with Interferon-Alpha. London: Chapman & Hall Medical 1997
- 2 Weidner N, Semle J P, Welch W R, Folkman J. Tumor angiogeness and metastasis-correlation in invasive breast carcinoma. N Engl J Med . 1991; 324 1-8
- 3 Gasparini G, Folkman J. Basic and clinical research on angiogenesis. Eur J Cancer . 1996; 32A 2379-2540
- 4 Bossi P, Viale G, Lee A K. et al . Angiogenesis in colorectal tumors: microvessel quantitation in adenomas and carcinomas with clinicopathological correlations. Cancer Res . 1995; 55 5049-5053
- 5 Sarbia M, Bittinger F, Porschen R. et al . Tumor vascularization and prognosis in squamous cell carcinomas of the esophagus. Anticancer Res . 1996; 15 2117-2122
- 6 Ellis L M, Walker R A, Gasparini G. Is determination of angiogenic activity in human tumours clinical useful?. Eur J Cancer . 1998; 34 609-618
- 7 Lindner D J, Borden E C. Effects of tamoxifen and interferon-beta or the combination on tumor-induced angiogenesis. Int J Cancer . 1997; 71 456-461
- 8 Poptani H, Puumalainen A M, Grohn O H. et al . Monitoring thymidine kinase and ganciclovir-induced changes in rat malignant glioma in vivo by nuclear magnetic resonance imaging. Cancer Gene Ther . 1998; 5 101-109
- 9 Rosen B R, Belliveau J W, Vevea J M, Brady T J. Perfusion imaging with NMR contrast agents. Magn Reson Med . 1990; 14 249-265
- 10 Belliveau J W, Kennedy D N, McKinstry R C, Buchbinder B R, Weisskoff R M. Functional mapping of the human visual cortex by magnetic resonance imaging. Science . 1991; 254 621-768
- 11 Aronen H J, Cohen M S, Belliveau J W, Fordham J A, Rosen B R. Ultrafast imaging of brain tumors. Top Magn Reson Imaging . 1993; 5 14-24
- 12 Maeda M, Itoh S, Kimura H. et al . Tumor vascularity in the brain: evaluation with dynamic susceptibility-contrast MR imaging. Radiology . 1993; 189 233-238
- 13 Aronen H J, Gazit I E, Louis D N. et al . Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology . 1994; 191 41-51
- 14 Guckel F, Brix G, Rempp K. et al . Assessment of cerebral blood volume with dynamic susceptibility contrast enhanced gradient-echo imaging. J Comput Assist Tomogr . 1994; 18 344-351
- 15 Bruening R, Kwong K K, Vevea M J. et al . Echo-planar MR determination of relative cerebral blood volume in human brain tumors: TI versus T2 weighting. Am J Neuroradiol . 1996; 17 831-840
- 16 Siegal T, Rubinstein R, Tzuk-Shina T, Gomori J M. Utility of relative cerebral blood volume mapping derived from perfusion magnetic resonance imaging in the routine follow up of brain tumors. J Neurosurg . 1997; 86 22-27
- 17 Boxerman J L, Rosen B R, Weisskoff R M. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging . 1997; 7 528-537
- 18 Hacklander T, Reichenbach J R, Modder U. Comparison of cerebral blood volume measurements using the TI and T2* methods in normal human brains and brain tumors. J Comput Assist Tomogr . 1997; 21 857-866
- 19 Hou L, Yang Y, Mattay V S, Frank J A, Duyn J H. Optimization of fast acquisition methods for whole-brain relative cerebral blood volume (rCBV) mapping with susceptibility contrast agents. J Magn Reson Imaging . 1999; 9 233-239
- 20 Donahue K M, Krouwer H GJ, Rand S D. et al . Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med . 2000; 43 845-853
- 21 Zhu X P, Li K L, Kamaly-Asl I D. et al . Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined TI and T2* contrast-enhanced dynamic MR imaging. J Magn Reson Imaging . 2000; 11 575-585
- 22 Aronen H J, Pardo F S, Kennedy D N. et al . High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res . 2000; 6 2189-2200
- 23 Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. Am J Neuroradiol . 2001; 22 1306-1315
- 24 Sugahara T, Jorogi Y, Tomiguchi S. et al . Posttherapeutic intraaxial brain tumor: the value of perfusion-sensitive contrast-enhanced MR imaging for differentiating tumor recurrence from nonneoplastic contrast-enhancing tissue. Am J Neuroradiol . 2000; 21 901-909
- 25 Fuss M, Wenz F, Essig M. et al . Tumor angiogenesis of low-grade astrocytomas measured by dynamic susceptibility contrast-enhanced MRI (DSC-MRI) is predictive of local tumor control after radiation therapy. Int J Radiat Oncol . 2001; 51 478-482
- 26 Hacklander T, Hofer M, Reichenbach J R. et al . Cerebral blood volume maps with dynamic contrast-enhanced TI-weighted FLASH imaging: normal values and preliminary clinical results. J Comput Assist Tomogr . 1996; 20 532-539
- 27 Boxerman J L, Hamberg L M, Rosen B R, Weisskoff R M. MR contrast due to intravascular magnetic susceptibility pertubations. Magn Reson Med . 1995; 34 555-566
- 28 Dennie J, Mandeville J B, Boxerman J L. et al . NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn Reson Med . 1998; 40 793-799
- 29 Heiland S, Benner T, Debus J. et al . Simultaneous assessment of cerebral hemodynamics and contrast agent uptake in lesions with disrupted blood brain barrier. Magn Reson Imaging . 1999; 17 21-27
- 30 Ostergaard L, Hochberg F H, Rabinov J D. et al . Early changes measured by magnetic resonance imaging in cerebral blood flow, blood volume, and blood-brain barrier permeability following dexamethasone treatment in patients with brain tumors. J Neurosurg . 1999; 90 300-305
-
31 Rand S D, Donahue-Schmainda K M, Pathak A P. et al .Effects of dexamethasone on rat 9L gliosarcoma model vasculature measured with MR derived relative cerebral blood volume maps and validated with histologic analysis. In: Proceedings of the 40th Annual Meeting of the American Society of Neuroradiology; May 13-17, 2002; Vancouver, Canada
- 32 Gossmann A, Helbich T H, Kuriyama N. et al . Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in xenograft model of gliobalstoma multiforme. J Magn Reson Imaging . 2002; 15 233-240
- 33 Drew P J, Buckley D, Mussurakis S. et al . In vivo quantitative analysis of tumour angiogenesis with dynamic contrast-enhanced magnetic resonance mammography (Abst). Br J Surg . 1997; 84(Suppl 1) 7