RSS-Feed abonnieren
DOI: 10.1055/s-2003-41011
New Radical HomoallylationReactions
Publikationsverlauf
Publikationsdatum:
11. August 2003 (online)
Abstract
Xanthate addition to 3-aryl-4-methanesulfonylbutene and structurallyrelated derivatives triggers a cascade involving aryl migrationand elimination of a sulfonyl radical, the result being an overallhomoallylation of the initial radical. Other slow migrating groupssuch as an ester can replace the aryl group.
Key words
radical homoallylation - xanthates - alkylsulfones - neophyl rearrangement - Surzur-Tanner rearrangement
- For reviews, see:
-
1a
Baguley PA.Walton JC. Angew. Chem.Int. Ed. 1998, 37: 3072 -
1b
Studer A. Synthesis 2003, 835 - 2
Bertrand F.Leguyader F.Liguori L.Ouvry G.Quiclet-Sire B.Seguin S.Zard SZ. C.R. Acad. Sci. 2001, 4: 547 -
3a
Xiang J.Evarts J.Rivkin A.Curran DP.Fuchs PL. Tetrahedron Lett. 1998, 39: 4163 -
3b
Quiclet-Sire B.Seguin S.Zard SZ. J.Am. Chem. Soc. 1996, 118: 1209 -
3c
Quiclet-Sire B.Seguin S.Zard SZ. Angew.Chem. Int. Ed. 1998, 37: 2864 -
4a
Xiang J.Fuchs PL. J.Am. Chem. Soc. 1996, 118: 11986 -
4b
Xiang J.Jiang W.Gong J.Fuchs PL. J. Am. Chem. Soc. 1997, 119: 4123 -
4c
Gong J.Fuchs PL. J. Am. Chem. Soc. 1996, 118: 4486 -
4d
Xiang J.Jiang W.Fuchs PL. TetrahedronLett. 1997, 38: 6635 -
4e
Bertrand F.Quiclet-Sire B.Zard SZ. Angew.Chem. Int. Ed. 1999, 38: 1943 - 5
Ollivier C.Renaud P. J. Am. Chem. Soc. 2001, 123: 4717 - 6
Kim S.Song H.-J.Choi T.-L.Yoon J.-Y. Angew. Chem. Int. Ed. 2001, 40: 2524 - For reviews, see:
-
7a
Zard SZ. Angew. Chem., Int. Ed. Engl. 1997, 36: 672 -
7b
Quiclet-Sire B.Zard SZ. Phosphorus, Sulfur SiliconRelat. Elem. 1999, 153: 137 -
7c
Quiclet-Sire B.Zard SZ. Phosphorus, Sulfur Silicon Relat.Elem. 1999, 154: 137 -
7d
Zard SZ. In Radicals in Organic Synthesis Vol.1:Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. p.90 - 8 For a recent review on aryl transfers,see:
Studer A.Bossart M. Tetrahedron 2001, 57: 9649 -
9a
Newcomb M. Tetrahedron 1993, 49: 1151 -
9b
Newcomb M. In Radicalsin Organic Synthesis Vol. 1:Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. p.317 - 10
Curran DP. In Comprehensive Organic Synthesis Vol.4:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. p.715-777 -
11a
Abeywickrema AN.Beckwith ALJ.Gerba S. J. Org.Chem. 1987, 52: 4072 -
11b
Parker TL.Spero DM.Irman K. Tetrahedron Lett. 1986, 27: 2833 -
11c
Ishibashi H.Kobayashi T.Nakashima S.Tamura O. J. Org. Chem. 2000, 65: 9022 -
11d
Ishibashi H.Ohata K.Niihara M.Sato T.Ikeda M. J.Chem. Soc., Perkin Trans. 1 2000, 547 - 12
Davidson AH.Eggleton N.Wallace IH. J.Chem. Soc., Chem. Commun. 1991, 378 - 13 For another example, see:
Ishibashi H.So TS.Okochi K.Sato T.Nakamura N.Nakatami H.Ikeda M. J. Org. Chem. 1991, 56: 95 - 14
Binot G.Quiclet-Sire B.Saleh T.Zard SZ. Synlett 2003, 382 - 15
Zheng BZ.Dowd P. Tetrahedron Lett. 1993, 34: 7709 -
16a
Surzur J.-M.Tessier P. Bull.Soc. Chim. Fr. 1970, 3060 -
16b
Tanner DD.Law FC. J.Am. Chem. Soc. 1969, 91: 7535 -
16c
Crich D.Beckwith ALJ.Filzen GF.Longmore LW. J.Am. Chem. Soc. 1996, 118: 7422 -
16d For reviews on such rearrangements,see:
Beckwith ALJ.Crich D.Duggan P.Yai Q. Chem.Rev. 1997, 97: 3273 -
16e See also:
Crich D. In Radicals in Organic Synthesis Vol.2:Renaud P.Sibi MP. Wiley-VCH; Weinheim: 2001. p.188 -
17a
Giese B.Groningen KS. Org.Synth. 1990, 69: 66 -
17b
Quiclet-Sire B.Zard SZ. J. Am. Chem. Soc. 1996, 118: 9190 -
17c
Gimisis T.Ialongo G.Chatgilialiglu C. Tetrahedron 1998, 54: 573 - 19
Attanasi OA.Filippone P.Santensanio S.Serra-Zanetti F. Synthesis 1987, 381
References
Typical ExperimentalProcedures: Synthesis of olefin 2c: Asolution of 2,4-dichlorobenzaldehyde (2.00 mL, 18.0 mmol) and methylsulfonylmethylmethylketone
[19]
(2.44 g, 18.0mmol) in toluene (12 mL) was refluxed in a Dean-Stark apparatus.A few drops of piperidine and few drops of acetic acid were addedto the solution. Once complete (TLC), the reaction was cooled tor.t., concentrated in vacuo and purified by flash chromatographyon silica gel (EtOAc/petroleum ether: 15/85) togive 4-(2′,4′-dichlorophenyl)-3-methylsulfonyl-but-3-en-2-one(76%, 12/1 mixture of isomers, 4.00 g) as palegreen solid, which was used directly in the next step. 1HNMR (400 MHz, CDCl3, major isomer only): δ = 7.99(s, 1 H), 7.54 (d, J = 2.0Hz, 1 H), 7.30 (dd, J = 2.0,8.3 Hz, 1 H), 7.17 (d, J = 8.3Hz, 1 H), 3.20 (s, 3 H), 2.24 (s, 3 H) ppm. 13CNMR (100 MHz, CDCl3, major isomer only): δ = 199.6,143.4, 137.9, 137.0, 135.4, 130.5, 130.3, 128.5, 127.7, 43.1, 31.6ppm. IR (CCl4): 2927, 2360, 1705, 1623, 1584, 1468, 1328,1143, 1106 cm-1. MS (CI, NH3): m/z [MNH4]+ = 311.
Toa solution of CuI (12 mmol) in THF (50 mL), was added vinylmagnesiumbromide (24 mL of a 1.0 M solution in THF) at -78 °Cunder an inert atmosphere. The solution was warmed to -40 °Cfor 10 min then cooled back to -78 °C.A solution of the above vinylsulfone (2.93 g, 10.0 mmol) in THF(20 mL) was added dropwise to the cuprate solution at -78 °Cunder an inert atmosphere. The reaction was stirred for 30 min thenquenched with a sat. solution of NH4Cl (20 mL). The mixturewas extracted with EtOAc (2 × 30 mL), andthe combined organic layers were washed with brine (20 mL), driedover MgSO4, concentrated in vacuo and purified by flashchromatography on silica gel (EtOAc/petroleum ether: 2/8)gave compound 1c (1.09 g; 34%;5/1 mixture of diastereoisomers.) as a pale brown solidwhich was used without further purification. 1HNMR (400 MHz, CDCl3) δ = 7.41 (d, J = 1.9 Hz,1 H), 7.24 (dd, J = 1.9,8.6 Hz, 1 H), 7.16 (d, J = 8.6Hz, 1 H), 6.03 (ddd, J = 8.3,9.0, 18.6 Hz, 1 H), 5.29 (d, J = 18.6Hz, 1 H), 5.23 (d, J = 9.0Hz, 1 H), 4.72-4.51 (m, 2 H, CH-SO2),3.02 (s, 1.5 H), 2.84 (s, 1.5 H), 2.34 (s, 1.5 H), 2.45 (s, 1.5H) ppm. 13C NMR (100 MHz, CDCl3) δ = 200.8,199.8, 148.0, 145.7, 137.4, 134.2, 133.7, 133.6, 130.6, 130.6, 130.3,130.2, 129.7, 129.3, 120.5, 118.9, 77.2, 75.4, 45.5, 45.2, 39.7,39.3, 33.7, 32.4 ppm. IR (CCl4): 3505, 3087, 2930, 1721,1586, 1472, 1356, 1325, 1121, 955 cm-1.MS (CI, NH3): m/z [MNH4]+ = 339.
Synthesis of Adduct 5d: To a solution ofxanthate 1b (124 mg, 0.50 mmol) and olefin 1c (240 mg, 0.75 mmol) in refluxing, degassed1,2-dichloroethane (2 mL) was added lauroyl peroxide (0.05 mmol)under an inert atmosphere. Further portions of lauroyl peroxidewere added every hour until complete consumption of the startingxanthate (0.4 mmol in total; TLC monitoring). The reaction mixturewas cooled, concentrated in vacuo and purified by flash chromatographyon silica gel (EtOAc/petroleum ether: 5/5) togive compound 5d (100 mg; 54%)as a white solid. 1H NMR (400 MHz, CDCl3): δ = 7.41(d, J = 2Hz, 1 H), 7.26 (dd, J = 2.0,8.3 Hz, 1 H), 7.18 (d, J = 8.3Hz, 1 H), 6.80 (dd, J = 7.3,16.0 Hz, 1 H), 6.1 (d, J = 16.0Hz, 1 H), 4.41 (t, J = 8.2Hz, 2 H), 4.10 (ddd, J = 7.3,7.3, 7.3 Hz, 1 H), 4.0 (t, J = 8.2Hz, 2 H), 2.95 (ddd, J = 6.7,8.8, 17.3 Hz, 1 H), 2.87 (ddd, J = 6.0,8.5, 17.3 Hz, 1 H), 2.25 (s, 3 H), 2.26 (m, 1 H), 2.12 (m, 1 H)ppm. 13C NMR (100 MHz, CDCl3): δ = 198.3, 172.4,153.5, 147.3, 137.2, 134.9, 133.5, 131.3, 129.8, 129.3, 127.8, 62.2,42.6, 42.3, 32.7, 29.1, 27.5. IR (CCl4): 2923, 1791,1702, 1682, 1473, 1384, 1360, 1222, 1104, 1047 cm-1.MS (CI, NH3): m/z [MNH4]+ = 388, [MH]+ = 371. Anal.Calcd for C17H17Cl2NO4 (%):C, 55.15; H, 4.63. Found (%): C, 54.96; H, 4.71.