Horm Metab Res 2003; 35(5): 308-312
DOI: 10.1055/s-2003-41307
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Identification of a Novel Variant in the Phosphoenolpyruvate Carboxykinase Gene Promoter in Japanese Patients with Type 2 Diabetes

Y.  Horikawa1 , T.  Yamasaki1 , H.  Nakajima1 , R.  Shingu1 , I.  Yoshiuchi1 , J.  Miyagawa1 , M.  Namba1 , T.  Hanafusa1 , Y.  Matsuzawa1
  • 1Department of Internal Medicine and Molecular Science, Graduate School of Medicine, B5, Osaka University (2 - 2 Yamada-Oka, Suita, Osaka 565-0871, Japan)
Further Information

Publication History

Received 2 August 2002

Accepted after Revision 16 December 2002

Publication Date:
13 August 2003 (online)

Abstract

Phosphoenolpyruvate carboxykinase (PEPCK) plays an important role in gluconeogenesis and hepatic glucose production. To test the hypothesis that mutations of the PEPCK gene promoter contribute to the increased hepatic glucose production that leads to diabetes, we screened for polymorphisms of the PEPCK promoter region in 252 Japanese type 2 diabetic patients and 188 non-diabetic control subjects. A novel variant at position - 232 (C to G) was found at a similar frequency in type 2 diabetes patients (32 %) and control subjects (35 %) (p = 0.26). However, patients with the - 232 G/G genotype had an earlier age of onset than those with the - 232 C/C or - 232 C/G genotypes (p = 0.028). As the variant might well otherwise influence hormonal action, we transfected PEPCK-luciferase fusion gene constructs with the variant into human hepatoma cells and examined the response to dexamethasone, insulin, and cAMP. The reporter assay showed no significant difference in hormonal responses with the fusion gene containing the variant. Accordingly, the single-base variant at position - 232 of the PEPCK gene promoter is most probably not a major contributor to the pathogenesis of type 2 diabetes. However, this variation may be useful as a genetic marker for other metabolic disorders, especially in Japanese.

References

  • 1 Olefsky J M, Kolterman O G, Scarlett J A. Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus.  Am J Physiol. 1982;  243 E15-30
  • 2 Consoli A. Role of liver in pathophysiology of NIDDM.  Diabetes Care. 1992;  15 430-441
  • 3 Consoli A, Nurjhan N, Capani F, Gerich J. Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM.  Diabetes. 1989;  38 550-557
  • 4 Hanson R W, Reshef L. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.  Annu Rev Biochem. 1997;  66 581-611
  • 5 Lamers W H, Hanson R W, Meisner H M. cAMP stimulates transcription of the gene for cytosolic phophoenolpyruvate carboxykinase in rat liver nuclei.  Proc Natl Acad Sci U S A. 1982;  79 5137-5141
  • 6 Sasaki K, Cripe T P, Koch S R, Andreone T L, Petersen D D, Beale E G, Granner D K. Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin.  J Biol Chem. 1984;  259 15 242-15 251
  • 7 Granner D, Andreone T, Sasaki K, Beale E. Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin.  Nature. 1983;  305 549-551
  • 8 Rosella G, Zajac J D, Kaczmarczyk S J, Andrikopoulos S, Proietto J. Impaired suppression of gluconeogenesis induced by overexpression of a noninsulin-responsive phosphoenolpyruvate carboxykinase gene.  Mol Endocrinol. 1993;  7 1456-1462
  • 9 Valera A, Pujol A, Pelegrin M, Bosch F. Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus.  Proc Natl Acad Sci U S A. 1994;  91 9151-9154
  • 10 Rosella G, Zajac J D, Baker L, Kaczmarczyk S J, Andrikopoulos S, Adams T E, Proietto J. Impaired glucose tolerance and increased weight gain in transgenic rats overexpressing a non-insulin-responsive phosphoenolpyruvate carboxykinase gene.  Mol Endocrinol. 1995;  9 1396-1404
  • 11 Franckhauser S, Munoz S, Pujol A, Casellas A, Riu E, Otaegui P, Su B, Bosch F. Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance.  Diabetes. 2002;  51 624-630
  • 12 Olswang Y, Cohen H, Papo O, Cassuto H, Croniger C M, Hakimi P, Tilghman S M, Hanson R W, Reshef L. A mutation in the peroxisome proliferator-activated receptor γ-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice.  Proc Natl Acad Sci USA. 2002;  99 625-630
  • 13 Short J M, Wynshaw-Boris A, Short H P, Hanson R W. Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains.  J Biol Chem. 1986;  261 9721-9726
  • 14 O'Brien R M, Lucas P C, Forest C D, Magnuson M A, Granner D K. Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription.  Science. 1990;  249 533-537
  • 15 O'Brien R M, Bonovich M T, Forest C D, Granner D K. Signal transduction convergence: Phorbol esters and insulin inhibit phosphoenolpyruvate carboxykinase gene transcription through the same 10-base-pair sequence.  Proc Natl Acad Sci U S A. 1991;  88 6580-6584
  • 16 O'Brien R M, Printz R L, Halmi N, Tiesinga J J, Granner D K. Structural and functional analysis of the human phosphoenolpyruvate carboxykinase gene promoter.  Biochim Biophys Acta. 1995;  1264 284-288
  • 17 Zouali H, Hani E H, Philippi A, Vionnet N, Beckmann J S, Demenais F, Froguel P. A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene.  Hum Mol Genet. 1997;  6 1401-1408
  • 18 Bowden D W, Sale M, Howard T D, Qadri A, Spray B J, Rothschild C B, Akots G, Rish S S, Freedman B I. Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy.  Diabetes. 1997;  46 882-886
  • 19 Ji L, Malecki M, Warram J H, Yang Y, Rish S S, Krolewski A S. New susceptibility locus for NIDDM is localized to human chromosome 20q.  Diabetes. 1997;  46 876-881
  • 20 Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P. Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and indentifies two new candidate loci on 7p and 11p.  Diabetes. 2002;  51 1247-1255
  • 21 Olansky L, Welling C, Giddings S, Adler S, Bourey R, Dowse G, Serjeantson S, Zimmet P, Permutt M A. A variant insulin promoter in non-insulin dependent diabetes mellitus.  J Clin Invest. 1992;  89 1596-1602
  • 22 Shimokawa K, Sakura H, Otabe S, Eto K, Kadowaki H, Hagura R, Yazaki Y, Akanuma Y, Kadowaki T. Analysis of the glucokinase gene promoter in Japanese subjects with noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1994;  79 883-886
  • 23 Bjorbaek C, Echwald S M, Hubricht P, Vestergaard H, Hansen T, Zierath J, Pedersen O. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM.  Diabetes. 1994;  43 976-983
  • 24 Stone L M, Kahn S E, Fujimoto W Y, Deeb S S, Porte D, Jr. Avariation at position -30 of the beta-cell glucokinase gene promoter is associated with reduced beta-cell function in middle-aged Japanese-American men.  Diabetes. 1996;  45 422-428
  • 25 Gragnoli C, Lindner T, Cockburn B N, Kaisaki P J, Gragnoli F, Marozzi G, Bell G I. Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4α binding site in the promoter of the hepatocyte nuclear factor-1α gene.  Diabetes. 1997;  46 1648-1651
  • 26 Godart F, Bellanne-Chantelot C, Clauin S, Gragnoli C, Abderrahmani A, Blanche H, Boutin P, Chevre J C, Froguel P, Bailleul B. Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1 alpha (TCF1) promoter region in MODY patients.  Hum Mutat. 2000;  15 173-180
  • 27 Ludwig D S, Vidal P uig, O'Brien R M, Printz R L, Granner D K, Moller D E, Flier J S. Examination of the phosphoenolpyruvate carboxykinase gene promoter in patients with noninsulin-dependent diabetes mellitus.  J Clin Endocrinol Metab. 1996;  81 503-506
  • 28 Liu J S, Park E A, Gurney A L, Roesler W J, Hanson R W. Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements.  J Biol Chem. 1991;  266 19 095-19 102
  • 29 Yoshiuchi I, Shingu R, Nakajima H, Hamaguchi T, Horikawa Y, Yamasaki T, Oue T, Ono A, Miyagawa J-i, Namba M, Hanafusa T, Matsuzawa Y. Mutation/polymorphism scanning of glucose-6-phosphatase gene promoter in noninsulin-dependent diabetes mellitus patients.  J Clin Endocrinol Metab. 1998;  83 1016-1019
  • 30 Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C R, Granner D K, Newgard C B, Spiegelman B M. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1.  Nature. 2001;  413 131-138
  • 31 Herzig S, Long F, Jhala U S, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1.  Nature. 2001;  413 179-183
  • 32 Ek J, Andersen G, Urhammer S A, Gaede P H, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O. Mutation analysis of peroxysome-proliferator-activated receptor-γ co-activator-1 (PGC-1) and relationships of identified amino acid polymorphisms to type II diabetes mellitus.  Diabetologia. 2001;  44 2220-2226

Y. Horikawa, M.D. 

The Laboratory of Molecular Genetics · Department of Cell Biology · Institute for Molecular and Cellular Regulation · Gunma University

3-39-15 Showa-machi Maebashi · Gunma 371-8512 · Japan

Phone: +81(27)220-8831

Fax: +81(27)220-8889 ·

Email: yhorikaw@showa.gunma-u.ac.jp (Y.H)