Abstract
Phosphoenol pyruvate carboxykinase (PEPCK) plays an important role in gluconeogenesis and hepatic glucose production. To test the hypothesis that mutations of the PEPCK gene promoter contribute to the increased hepatic glucose production that leads to diabetes, we screened for polymorphisms of the PEPCK promoter region in 252 Japanese type 2 diabetic patients and 188 non-diabetic control subjects. A novel variant at position - 232 (C to G) was found at a similar frequency in type 2 diabetes patients (32 %) and control subjects (35 %) (p = 0.26). However, patients with the - 232 G/G genotype had an earlier age of onset than those with the - 232 C/C or - 232 C/G genotypes (p = 0.028). As the variant might well otherwise influence hormonal action, we transfected PEPCK-luciferase fusion gene constructs with the variant into human hepatoma cells and examined the response to dexamethasone, insulin, and cAMP. The reporter assay showed no significant difference in hormonal responses with the fusion gene containing the variant. Accordingly, the single-base variant at position - 232 of the PEPCK gene promoter is most probably not a major contributor to the pathogenesis of type 2 diabetes. However, this variation may be useful as a genetic marker for other metabolic disorders, especially in Japanese.
Key words:
Gluconeogenesis - Single Nucleotide Polymorphism - Insulin Response - Single Strand Conformation Polymorphism - Gene Expression
References
1
Olefsky J M, Kolterman O G, Scarlett J A.
Insulin action and resistance in obesity and noninsulin-dependent type II diabetes mellitus.
Am J Physiol.
1982;
243
E15-30
2
Consoli A.
Role of liver in pathophysiology of NIDDM.
Diabetes Care.
1992;
15
430-441
3
Consoli A, Nurjhan N, Capani F, Gerich J.
Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM.
Diabetes.
1989;
38
550-557
4
Hanson R W, Reshef L.
Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression.
Annu Rev Biochem.
1997;
66
581-611
5
Lamers W H, Hanson R W, Meisner H M.
cAMP stimulates transcription of the gene for cytosolic phophoenolpyruvate carboxykinase in rat liver nuclei.
Proc Natl Acad Sci U S A.
1982;
79
5137-5141
6
Sasaki K, Cripe T P, Koch S R, Andreone T L, Petersen D D, Beale E G, Granner D K.
Multihormonal regulation of phosphoenolpyruvate carboxykinase gene transcription. The dominant role of insulin.
J Biol Chem.
1984;
259
15 242-15 251
7
Granner D, Andreone T, Sasaki K, Beale E.
Inhibition of transcription of the phosphoenolpyruvate carboxykinase gene by insulin.
Nature.
1983;
305
549-551
8
Rosella G, Zajac J D, Kaczmarczyk S J, Andrikopoulos S, Proietto J.
Impaired suppression of gluconeogenesis induced by overexpression of a noninsulin-responsive phosphoenolpyruvate carboxykinase gene.
Mol Endocrinol.
1993;
7
1456-1462
9
Valera A, Pujol A, Pelegrin M, Bosch F.
Transgenic mice overexpressing phosphoenolpyruvate carboxykinase develop non-insulin-dependent diabetes mellitus.
Proc Natl Acad Sci U S A.
1994;
91
9151-9154
10
Rosella G, Zajac J D, Baker L, Kaczmarczyk S J, Andrikopoulos S, Adams T E, Proietto J.
Impaired glucose tolerance and increased weight gain in transgenic rats overexpressing a non-insulin-responsive phosphoenolpyruvate carboxykinase gene.
Mol Endocrinol.
1995;
9
1396-1404
11
Franckhauser S, Munoz S, Pujol A, Casellas A, Riu E, Otaegui P, Su B, Bosch F.
Increased fatty acid re-esterification by PEPCK overexpression in adipose tissue leads to obesity without insulin resistance.
Diabetes.
2002;
51
624-630
12
Olswang Y, Cohen H, Papo O, Cassuto H, Croniger C M, Hakimi P, Tilghman S M, Hanson R W, Reshef L.
A mutation in the peroxisome proliferator-activated receptor γ-binding site in the gene for the cytosolic form of phosphoenolpyruvate carboxykinase reduces adipose tissue size and fat content in mice.
Proc Natl Acad Sci USA.
2002;
99
625-630
13
Short J M, Wynshaw-Boris A, Short H P, Hanson R W.
Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. II. Identification of cAMP and glucocorticoid regulatory domains.
J Biol Chem.
1986;
261
9721-9726
14
O'Brien R M, Lucas P C, Forest C D, Magnuson M A, Granner D K.
Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription.
Science.
1990;
249
533-537
15
O'Brien R M, Bonovich M T, Forest C D, Granner D K.
Signal transduction convergence: Phorbol esters and insulin inhibit phosphoenol pyruvate carboxykinase gene transcription through the same 10-base-pair sequence.
Proc Natl Acad Sci U S A.
1991;
88
6580-6584
16
O'Brien R M, Printz R L, Halmi N, Tiesinga J J, Granner D K.
Structural and functional analysis of the human phosphoenolpyruvate carboxykinase gene promoter.
Biochim Biophys Acta.
1995;
1264
284-288
17
Zouali H, Hani E H, Philippi A, Vionnet N, Beckmann J S, Demenais F, Froguel P.
A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene.
Hum Mol Genet.
1997;
6
1401-1408
18
Bowden D W, Sale M, Howard T D, Qadri A, Spray B J, Rothschild C B, Akots G, Rish S S, Freedman B I.
Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy.
Diabetes.
1997;
46
882-886
19
Ji L, Malecki M, Warram J H, Yang Y, Rish S S, Krolewski A S.
New susceptibility locus for NIDDM is localized to human chromosome 20q.
Diabetes.
1997;
46
876-881
20
Mori Y, Otabe S, Dina C, Yasuda K, Populaire C, Lecoeur C, Vatin V, Durand E, Hara K, Okada T, Tobe K, Boutin P, Kadowaki T, Froguel P.
Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and indentifies two new candidate loci on 7p and 11p.
Diabetes.
2002;
51
1247-1255
21
Olansky L, Welling C, Giddings S, Adler S, Bourey R, Dowse G, Serjeantson S, Zimmet P, Permutt M A.
A variant insulin promoter in non-insulin dependent diabetes mellitus.
J Clin Invest.
1992;
89
1596-1602
22
Shimokawa K, Sakura H, Otabe S, Eto K, Kadowaki H, Hagura R, Yazaki Y, Akanuma Y, Kadowaki T.
Analysis of the glucokinase gene promoter in Japanese subjects with noninsulin-dependent diabetes mellitus.
J Clin Endocrinol Metab.
1994;
79
883-886
23
Bjorbaek C, Echwald S M, Hubricht P, Vestergaard H, Hansen T, Zierath J, Pedersen O.
Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM.
Diabetes.
1994;
43
976-983
24
Stone L M, Kahn S E, Fujimoto W Y, Deeb S S, Porte D, Jr.
Avariation at position -30 of the beta-cell glucokinase gene promoter is associated with reduced beta-cell function in middle-aged Japanese-American men.
Diabetes.
1996;
45
422-428
25
Gragnoli C, Lindner T, Cockburn B N, Kaisaki P J, Gragnoli F, Marozzi G, Bell G I.
Maturity-onset diabetes of the young due to a mutation in the hepatocyte nuclear factor-4α binding site in the promoter of the hepatocyte nuclear factor-1α gene.
Diabetes.
1997;
46
1648-1651
26
Godart F, Bellanne-Chantelot C, Clauin S, Gragnoli C, Abderrahmani A, Blanche H, Boutin P, Chevre J C, Froguel P, Bailleul B.
Identification of seven novel nucleotide variants in the hepatocyte nuclear factor-1 alpha (TCF1) promoter region in MODY patients.
Hum Mutat.
2000;
15
173-180
27
Ludwig D S, Vidal P uig, O'Brien R M, Printz R L, Granner D K, Moller D E, Flier J S.
Examination of the phosphoenolpyruvate carboxykinase gene promoter in patients with noninsulin-dependent diabetes mellitus.
J Clin Endocrinol Metab.
1996;
81
503-506
28
Liu J S, Park E A, Gurney A L, Roesler W J, Hanson R W.
Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements.
J Biol Chem.
1991;
266
19 095-19 102
29
Yoshiuchi I, Shingu R, Nakajima H, Hamaguchi T, Horikawa Y, Yamasaki T, Oue T, Ono A, Miyagawa J-i, Namba M, Hanafusa T, Matsuzawa Y.
Mutation/polymorphism scanning of glucose-6-phosphatase gene promoter in noninsulin-dependent diabetes mellitus patients.
J Clin Endocrinol Metab.
1998;
83
1016-1019
30
Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C R, Granner D K, Newgard C B, Spiegelman B M.
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1.
Nature.
2001;
413
131-138
31
Herzig S, Long F, Jhala U S, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M.
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1.
Nature.
2001;
413
179-183
32
Ek J, Andersen G, Urhammer S A, Gaede P H, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O.
Mutation analysis of peroxysome-proliferator-activated receptor-γ co-activator-1 (PGC-1 ) and relationships of identified amino acid polymorphisms to type II diabetes mellitus.
Diabetologia.
2001;
44
2220-2226
Y. Horikawa, M.D.
The Laboratory of Molecular Genetics · Department of Cell Biology · Institute for Molecular and Cellular Regulation · Gunma University
3-39-15 Showa-machi Maebashi · Gunma 371-8512 · Japan
Telefon: +81(27)220-8831
Fax: +81(27)220-8889 ·
eMail: yhorikaw@showa.gunma-u.ac.jp (Y.H)