Semin Reprod Med 2003; 21(2): 173-182
DOI: 10.1055/s-2003-41324
Copyright © 2003 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Cell Adhesion Molecules and Endometriosis

Craig A. Witz
  • Department of Obstetrics Gynecology, The University of Texas Health Science Center at San Antonio San Antonio Texas
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
14. August 2003 (online)

ABSTRACT

The pathogenesis of endometriosis remains poorly defined. The interaction of endometrium with peritoneum is an important aspect of the disease process. Cell adhesion molecules (CAMs) are transmembrane receptors that facilitate intercellular binding and cellular interaction with the extracellular matrix (ECM). CAMs and components of the ECM are divided into large families based on sequence homology and similarity of tertiary structures. The function of eutopic and ectopic endometrial CAMs has been a focus of recent studies concerning the pathogenesis of endometriosis. Specific alterations in endometrial and peritoneal CAMs could facilitate binding of reflux menstruated endometrium at ectopic sites. In addition, the expression of CAMs by endometriotic lesions has been investigated to help understand mechanisms involved in the maintenance of endometrial tissue in ectopic locations. An understanding of the mechanisms involved in the interaction of endometrium with peritoneal tissues may provide new strategies to prevent endometriotic implants from forming and help treat existing lesions.

REFERENCES

  • 1 Witz C A. Current concepts in the pathogenesis of endometriosis.  Clin Obstet Gynecol . 1999;  42 566-585
  • 2 Sampson J. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity.  Am J Obstet Gynecol . 1927;  14 422-469
  • 3 Witz C A, Thomas M R, Montoya-Rodriguez I A. et al . Short-term culture of peritoneum explants confirms attachment of endometrium to intact peritoneal mesothelium.  Fertil Steril . 2001;  74 385-390
  • 4 van der Linden J P, de Goeij F A, Dunselman G A, Erkens H W, Evers J L. Endometrial cell adhesion in an in vitro model using intact amniotic membranes.  Fertil Steril . 1996;  65 76-80
  • 5 Groothuis P G, Koks C A, de Goeij F A. et al . Adhesion of human endometrium to the epithelial lining and extracellular matrix of amnion in vitro: an electron microscopic study.  Hum Reprod . 1998;  13 2275-2281
  • 6 Groothuis P G, Koks C A, de Goeij F A. et al . Adhesion of human endometrial fragments to peritoneum in vitro.  Fertil Steril . 1999;  71 1119-1124
  • 7 Koks C A, Groothuis P G, Dunselman G A, de Goeij F A, Evers J L. Adhesion of shed menstrual tissue in an in-vitro model using amnion and peritoneum: a light and electron microscopic study.  Hum Reprod . 1999;  14 816-822
  • 8 Witz C A, Allsup K, Vaughn S L, Montoya-Rodriguez I A, Centonze V E, Schenken R S. Culture of menstrual endometrium with peritoneal explants and mesothelial monolayers confirms attachment to intact mesothelial cells.  Hum Reprod . 2002;  17 2832-2838
  • 9 Spuijbroek M D, Dunselman G A, Menheere P P, Evers J L. Early endometriosis invades the extracellular matrix.  Fertil Steril . 1992;  58 929-933
  • 10 Sillem M, Hahn U, Coddington 3rd C C. et al . Ectopic growth of endometrium depends on its structural integrity and proteolytic activity in the cynomolgus monkey model of endometriosis.  Fertil Steril . 1996;  66 468-473
  • 11 Witz C A, Montoya-Rodriguez I A, Schenken R S. Whole peritoneal explants-a novel model of the early endometriosis lesion.  Fertil Steril . 1999;  71 56-60
  • 12 Witz C A, Cho S, Centonze V E, Montoya-Rodriguez I A, Schenken R S. Time series analysis of transmesothelial invasion by endometrial stromal and epithelial cells using three-dimensional confocal microscopy.  Fertil Steril . 2003;  79 770-778
  • 13 Humphries M J. Integrin cell adhesion receptors and the concept of agonism.  Trends Pharmacol Sci . 2000;  21 29-32
  • 14 Pollard T D, Earnshaw W C. Cell Biology. Philadelphia: Elsevier Science; 2002: 485-506
  • 15 Meisenberg G, Simmons W H. Principles of Medical Biochemistry. St. Louis: Mosby 1998: 255-272
  • 16 van der Flier A, Sonnenberg A. Function and interactions of integrins.  Cell Tissue Res . 2001;  305 285-298
  • 17 Danen E H, Yamada K M. Fibronectin, integrins, and growth control.  J Cell Physiol . 2001;  189 1-13
  • 18 Holly S P, Larson M K, Parise L V. Multiple roles of integrins in cell motility.  Exp Cell Res . 2000;  261 69-74
  • 19 Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fassler R. Integrins in invasive growth.  J Clin Invest . 2002;  109 999-1006
  • 20 Conacci-Sorrell M, Zhurinsky J, Ben-Ze'ev A. The cadherin-catenin adhesion system in signaling and cancer.  J Clin Invest . 2002;  109 987-991
  • 21 Gumbiner B M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis.  Cell . 1996;  84 345-357
  • 22 Cavallaro U, Schaffhauser B, Christofori G. Cadherins and the tumour progression: is it all in a switch?.  Cancer Lett . 2002;  176 123-128
  • 23 Abbas A K, Lichtman A H, Pober J S. Cellular and Molecular Immunology. Philadelphia: WB Saunders 1994: 141-142
  • 24 Abbas A K, Lichtman A H, Pober J S. Cellular and Molecular Immunology. Philadelphia: WB Saunders 1994: 225-228
  • 25 Slater N J, Raftery A T, Cope G H. The ultrastructure of human abdominal mesothelium.  J Anat . 1989;  167 47-56
  • 26 Lessan K, Aguiar D J, Oegema T, Siebenson L, Skubitz A P. CD44 and beta1 integrin mediate ovarian carcinoma cell adhesion to peritoneal mesothelial cells.  Am J Pathol . 1999;  154 1525-1537
  • 27 Strobel T, Cannistra S A. Beta1-integrins partly mediate binding of ovarian cancer cells to peritoneal mesothelium in vitro.  Gynecol Oncol . 1999;  73 362-367
  • 27b Witz C A, Montoya-Rodriguez I A, Cho S, Centonze V E, Bonewald L F, Schenken R S. Composition of the extracellular matrix of the peritoneum.  J Soc Gynecol Invest . 2001;  8 229-230
  • 28 Bruner K L, Matrisian L M, Rodgers W H, Gorstein F, Osteen K G. Suppression of matrix metalloproteinases inhibits establishment of ectopic lesions by human endometrium in nude mice.  J Clin Invest . 1997;  99 2851-2857
  • 29 Evers J LH, Willebrand D. The basement membrane in endometriosis.  Fertil Steril . 1987;  47 505-507
  • 30 Beliard A, Donnez J, Nisolle M, Foidart J M. Localization of laminin, fibronectin, E-cadherin, and integrins in endometrium and endometriosis.  Fertil Steril . 1997;  67 266-272
  • 31 Laurent T C, Fraser J R. Hyaluronan.  FASEB J . 1992;  6 2397-2404
  • 32 Jones L M, Gardner M J, Catterall J B, Turner G A. Hyaluronic acid secreted by mesothelial cells: a natural barrier to ovarian cancer cell adhesion.  Clin Exp Metastasis . 1995;  13 373-380
  • 33 Yung S, Coles G A, Davies M. IL-1 beta, a major stimulator of hyaluronan synthesis in vitro of human peritoneal mesothelial cells: relevance to peritonitis in CAPD.  Kidney Int . 1996;  50 1337-1343
  • 34 Dechaud H, Witz C A, Montoya-Rodriguez I A, Degraffenried L, Schenken R S. Mesothelial cell-associated hyaluronic acid facilitates endometrial stromal and epithelial cell binding to mesothelium.  Fertil Steril . 2001;  76 1012-1018
  • 35 Katsura M, Furumoto H, Nishimura M, Kamada M, Aono T. Overexpression of CD44 variants 6 and 7 in human endometrial cancer.  Gynecol Oncol . 1998;  71 185-189
  • 36 Borland G, Ross J A, Guy K. Forms and functions of CD44.  Immunology . 1998;  93 139-148
  • 37 Behzad F, Seif M W, Campbell S, Aplin J D. Expression of two isoforms of CD44 in human endometrium.  Biol Reprod . 1994;  51 739-747
  • 38 Saegusa M, Hashimura M, Okayasu I. CD44 expression in normal, hyperplastic, and malignant endometrium.  J Pathol . 1998;  184 297-306
  • 39 Yaegashi N, Fujita N, Yajima A, Nakamura M. Menstrual cycle dependent expression of CD44 in normal human endometrium.  Hum Pathol . 1995;  26 862-865
  • 40 Prifti S, Sillem M, Arslic T. et al . In vitro expression of soluble and cell surface-associated CD44 on endometrial cells from women with and without endometriosis.  Eur J Clin Invest . 1998;  28 1055-1060
  • 41 Lessey B A, Castelbaum A J, Sawin S W, Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility.  Fertil Steril . 1995;  63 535-542
  • 42 Lessey B A, Castelbaum A J, Buck C A. et al . Further characterization of endometrial integrins during the menstrual cycle and in pregnancy.  Fertil Steril . 1994;  62 497-506
  • 43 Tabibzadeh S. Patterns of expression of integrin molecules in human endometrium throughout the menstrual cycle.  Hum Reprod . 1992;  7 876-882
  • 44 Lessey B A, Castelbaum A J, Sawin S W. et al . Aberrant integrin expression in the endometrium of women with endometriosis.  J Clin Endocrinol Metab . 1994;  79 643-649
  • 45 Lessey B A, Damjanovich L, Coutifaris C. et al . Integrin adhesion molecules in the human endometrium. Correlation with the normal and abnormal menstrual cycle.  J Clin Invest . 1992;  90 188-195
  • 46 Albers A, Thie M, Hohn H P, Denker H W. Differential expression and localization of integrins and CD44 in the membrane domains of human uterine epithelial cells during the menstrual cycle.  Acta Anat . 1995;  153 12-19
  • 47 Bridges J E, Prentice A, Roche W, Englefield P, Thomas E J. Expression of integrin adhesion molecules in endometrium and endometriosis.  Br J Obstet Gynecol . 1994;  101 696-700
  • 48 Rai V, Hopkisson J, Kennedy S. et al . Integrins alpha 3 and alpha 6 are differentially expressed in endometrium and endometriosis.  J Pathol . 1996;  180 181-187
  • 49 Starzinski-Powitz A, Handrow-Metzmacher H, Kotzian S. The putative role of cell adhesion molecules in endometriosis: can we learn from tumour metastasis?.  Mol Med Today . 1999;  5 304-309
  • 50 Koks C A, Groothuis P G, Dunselman G A, de Goeij F A, Evers J L. Adhesion of menstrual endometrium to extracellular matrix: the possible role of integrin alpha(6)beta(1) and laminin interaction.  Mol Hum Reprod . 2000;  6 170-177
  • 51 Grosskinsky C M, Yowell C W, Sun J, Parise L V, Lessey B A. Modulation of integrin expression in endometrial stromal cells in vitro.  J Clin Endocrinol Metab . 1996;  81 2047-2054
  • 52 Witz C A, Montoya-Rodriguez I A, Doucet R V, Bonewald L F, Schenken R S. Tumor necrosis factor-α increases endometrial stromal cell adhesion to extracellular matrix proteins. Presented at the 44th Annual Meeting of the Society for Gynecologic Investigation; 1997; San Diego, CA
  • 53 Sillem M, Prifti S, Monga B, Arslic T, Runnebaum B. Integrin-mediated adhesion of uterine endometrial cells from endometriosis patients to extracellular matrix proteins is enhanced by tumor necrosis factor alpha (TNF alpha) and interleukin-1 (IL-1).  Eur J Obstet Gynecol Reprod Biol . 1999;  87 123-127
  • 54 Garcia-Velasco J A, Arici A. Interleukin-8 expression in endometrial stromal cells is regulated by integrin-dependent cell adhesion.  Mol Hum Reprod . 1999;  5 1135-1140
  • 55 Oral E, Arici A. Peritoneal growth factors and endometriosis.  Semin Reprod Endocrinol . 1996;  14 257-267
  • 56 Arici A, Seli E, Zeyneloglu H B. et al . Interleukin-8 induces proliferation of endometrial stromal cells: a potential autocrine growth factor.  J Clin Endocrinol Metab . 1998;  83 1201-1205
  • 57 Iwabe T, Harada T, Tsudo T. et al . Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis.  Fertil Steril . 1998;  69 924-930
  • 58 Tseng J F, Ryan I P, Milam T D. et al . Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis.  J Clin Endocrinol Metabol . 1996;  81 1118-1122
  • 59 Garcia-Velasco J A, Seli E, Arici A. Regulation of monocyte chemotactic protein-1 expression in human endometrial stromal cells by integrin-dependent cell adhesion.  Biol Reprod . 1999;  61 548-552
  • 60 Akoum A, Lemay A, McColl S, Turcot-Lemay L, Maheux R. Elevated concentration and biologic activity of monocyte chemotactic protein-1 in the peritoneal fluid of patients with endometriosis.  Fertil Steril . 1996;  66 17-23
  • 61 Arici A, Oral E, Attar E, Tazuke S I, Olive D L. Monocyte chemotactic protein-1 concentration in peritoneal fluid of women with endometriosis and its modulation of expression in mesothelial cells.  Fertil Steril . 1997;  67 1065-1072
  • 62 Witz C A, Montoya-Rodriguez I A, Miller D M, Schneider B G, Schenken R S. Mesothelium expression of integrins in vivo and in vitro.  J Soc Gynecol Invest . 1998;  5 87-93
  • 63 Witz C A, Takahashi A, Montoya-Rodriguez I A, Cho S, Schenken R S. Expression of the α2β1 and α3β1 integrins at the surface of mesothelial cells: a potential attachment site of endometrial cells.  Fertil Steril . 2000;  74 579-584
  • 64 Witz C A, Cho S, Montoya-Rodriguez I A, Schenken R S. The α2β1 and α3β1 integrins do not mediate attachment of endometrial cells to peritoneal mesothelium.  Fertil Steril . 2002;  78 796-803
  • 65 Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A. Invasiveness of endometriotic cells in vitro.  Lancet . 1995;  346 1463-1464
  • 66 Gaetje R, Kotzian S, Herrmann G, Baumann R, Starzinski-Powitz A. Nonmalignant epithelial cells, potentially invasive in human endometriosis, lack the tumor suppressor molecule E-cadherin.  Am J Pathol . 1997;  150 461-467
  • 67 Zeitvogel A, Baumann R, Starzinski-Powitz A. Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model.  Am J Pathol . 2001;  159 1839-1852
  • 68 Gaetje R, Winnekendonk D W, Scharl A, Kaufmann M. Ovarian cancer antigen CA 125 enhances the invasiveness of the endometriotic cell line EEC 145.  J Soc Gynecol Invest . 1999;  6 278-281
  • 69 van der Linden J P, de Goeij F A, Dunselman G A. et al . Expression of integrins and E-cadherin in cells from menstrual effluent, endometrium, peritoneal fluid, peritoneum, and endometriosis.  Fertil Steril . 1994;  61 85-90
  • 70 Tabibzadeh S, Kong Q F, Babaknia A. Expression of adhesion molecules in human endometrial vasculature throughout the menstrual cycle.  J Clin Endocrinol Metab . 1994;  79 1024-1032
  • 71 Oosterlynck D J, Cornillie F J, Waer M, Vandeputte M, Koninckx P R. Women with endometriosis show a defect in natural killer activity resulting in a decreased cytotoxicity to autologous endometrium.  Fertil Steril . 1991;  56 45-51
  • 72 Oosterlynck D J, Meuleman C, Waer M, Vandeputte M, Koninckx P R. The natural killer activity of peritoneal fluid lymphocytes is decreased in women with endometriosis.  Fertil Steril . 1992;  58 290-295
  • 73 Garzetti G G, Ciavattini A, Provinciali M. et al . Natural killer cell activity in endometriosis: correlation between serum estradiol levels and cytotoxicity.  Obstet Gynecol . 1993;  81 665-668
  • 74 Wilson T J, Hertzog P J, Angus D. et al . Decreased natural killer cell activity in endometriosis patients: relationship to disease pathogenesis.  Fertil Steril . 1994;  62 1086-1088
  • 75 Abbas A K, Lichtman A H, Pober J S. Cellular and Molecular Immunology. Philadelphia: WB Saunders 1994: 53-55
  • 76 Prefumo F, Semino C, Melioli G, Venturini P L. A defective expression of ICAM-1 (CD54) on secretory endometrial cells is associated with endometriosis.  Immunol Lett . 2002;  80 49-53
  • 77 Vigano P, Pardi R, Magri B. et al . Expression of intercellular adhesion molecule-1 (ICAM-1) on cultured human endometrial stromal cells and its role in the interaction with natural killers.  Am J Reprod Immunol . 1994;  32 139-145
  • 78 Somigliana E, Vigano P, Gaffuri B. et al . Human endometrial stromal cells as a source of soluble intercellular adhesion molecule (ICAM)-1 molecules.  Hum Reprod . 1996;  11 1190-1194
  • 79 Daniel Y, Geva E, Amit A. et al . Do soluble cell adhesion molecules play a role in endometriosis?.  Am J Reprod Immunol. . 2000;  43 160-166
  • 80 Lessey B A, Young S L. Integrins and other cell adhesion molecules in endometrium and endometriosis.  Semin Reprod Endocrinol . 1997;  15 291-299
  • 81 Schmidt M, Regidor P A, Engel K. et al . E- and P-selectin expression in endometriotic tissues and the corresponding endometria.  Gynecol Endocrinol . 2000;  14 111-117