Subscribe to RSS
DOI: 10.1055/s-2003-41417
Catalytic-Enantioselective Methoxycarbonylation of 1,3-Dichloroarenetricarbonyl-chromium(0) Complexes: A Desymmetrization Approach to Planar Chirality
Publication History
Publication Date:
22 September 2003 (online)
Abstract
The Pd-catalyzed mono-methoxycarbonylation of prochiral 1,3-dichloroarene-Cr(CO)3 complexes was investigated. In the presence of the chiral ferrocene ligand (R,S P )-PPF-pyrrolidine the planar-chiral products were obtained with up to 90% ee (53% yield). A strong dependence of the enantioselectivity on the reaction time was observed. A kinetic study using η6-(2,6-dichlorotoluene)-Cr(CO)3 revealed that the initial enantiomeric purity of the mono-methoxycarbonylated product is further enhanced due to a kinetic resolution (S = 4.3) connected to the formation of the bis-methoxycarbonylated side-product.
Key words
arene complexes - asymmetric catalysis - chromium - kinetic resolution - palladium.
- For recent reviews see:
-
1a
Schmalz H.-G.Siegel S. In Transition Metals for Organic Synthesis Vol. 1:Beller M.Bolm C. Wiley-VCH; Weinheim: 1998. p.550 -
1b
Hegedus LS. Transition Metals in the Synthesis of Complex Organic Molecules University Science Books; Sausalito CA: 1999. Chap. 10. -
1c
Kündig EP.Pache SH. In Science of Synthesis Cat. 1, Vol. 2:Imamoto T. Houben-Weyl; Thieme Verlag: 2003. p.155 - For recent reviews see:
-
2a
Gibson SE.Ibrahim H. Chem. Commun. 2002, 2465 -
2b
Bolm C.Muniz K. Chem. Soc. Rev. 1999, 28: 51 - For some recent examples, see:
-
3a
Ratni H.Kündig EP. Org Lett. 1999, 1: 1997 -
3b
Monovich LG.Le Huerou Y.Ronn M.Molander GA. J. Am. Chem. Soc. 2000, 122 -
3c
Dehmel F.Lex J.Schmalz H.-G. Org Lett. 2002, 4: 3915 - See, for instance:
-
4a
Davies SG.Goodfellow CL. J. Chem. Soc., Perkin Trans. 1 1990, 393 -
4b
Gibson SE.Reddington EG. Chem. Commun. 2000, 989 - 5
Malézieux B.Jaouen G.Salaün J.Howell JAS.Palin MG.McArdle P.O’Gara M.Cunningham D. Tetrahedron: Asymmetry 1992, 3: 375 -
6a
Uemura M.Nishimura H.Hayashi T. Tetrahedron Lett. 1993, 34: 107 -
6b
Uemura M.Nishimura H.Hayashi T. J. Organomet. Chem. 1994, 473: 129 - 7
Gotov B.Schmalz H.-G. Org. Lett. 2001, 3: 1753 - 8
Merlic CA.Zechman AL.Miller MM. J. Am. Chem. Soc. 2001, 123: 11101 - 10
Mahaffy CAL.Pauson P. Inorg. Synth. 1979, XIX: 154 - 11
Hayashi T.Mise T.Fukushima M.Kagotani M.Nagashima N.Hamada Y.Matsumoto A.Kawakami S.Konishi M.Yamamoto K.Kumada M. Bull. Chem. Soc. Jpn. 1980, 53: 1138 -
15a
Kagan HB.Fiaud JC. In Topics in Stereochemistry Vol. 18: Eliel E. L., Wilen S. H., Wiley; New York: 1988. p.249 -
15b
Keith JM.Larrow JF.Jacobsen EN. Adv. Synth. Catal. 2001, 343: 5 -
15c For an example in arene-Cr(CO)3 chemistry, see:
Carpentier J.-F.Pamart L.Maciewjeski l.Castanet Y.Brocard J.Mortreux A. Tetrahedron Lett. 1996, 37: 167 -
16a
Koide H.Uemura M. Chem. Commun. 1998, 2483 -
16b
[α]589 26 = -100.0 in CHCl3 for pure ent- 6.
References
1a: Mp: 123 °C. 1H NMR (CDCl3, 250 MHz): δ = 5.17 (d,
2 H, J = 6.3 Hz), 5.48 (t, 1 H, J = 6.3 Hz), 5.59 (br s, 1 H). 13C NMR (CDCl3, 63 MHz): δ = 87.2, 90.1, 91.9 (d), 113.3, 230.3 (s). 1b: Mp: 95 °C. 1H NMR (CDCl3, 250 MHz): δ = 2.48 (s, 3 H); 5.29-5.37 (m, 3 H). 13C NMR (CDCl3, 63 MHz): δ = 17.3 (q), 89.5, 90.4 (d), 103.2, 113.4, 230.9 (s). 1c: Mp: 82 °C. 1H NMR (CDCl3, 250 MHz): δ = 3.95 (s, 3 H), 5.21-5.30 (m, 3 H). 13C NMR (CDCl3, 63 MHz): δ = 65.8 (q), 87.7, 89.7 (d), 109.6, 131.9, 230.5 (s).
Typical procedure: Complex 1b (148.5 mg, 0.5 mmol) and 5-PdCl2 (16.2 mg, 0.025 mmol) were placed under argon in a flame-dried Schlenk flask equipped with a reflux condenser. Deoxygenated anhydrous methanol (3.3 mL) and triethylamine (1.7 mL) were added via a syringe and the reaction mixture was degassed and flushed with argon four times and finally flushed with CO. After stirring at 40 °C for 1 h the reaction mixture was cooled in an ice-bath, diluted with MTBE and filtered through a pad of silica. Upon concentration of the filtrate the received orange oil was sub-jected to column chromatography (silica, CyHex/MTBE =
8/1): 1b (10.3 mg, 7%), 2b (101.9 mg, 64%, orange oil) and 3b (39.2 mg, 23%, orange crystals).
rac-
2a: Orange crystals. Mp: 76 °C. 1H NMR (C6D6, 250 MHz): δ = 3.31 (s, 3 H), 4.19 (t, 1 H, J = 6.5 Hz), 4.62 (d, 1 H, J = 6.5 Hz), 5.18 (d, 1 H, J = 6.5 Hz), 5.83 (br s, 1 H).
13C NMR (C6D6, 63 MHz): δ = 52.5 (q), 90.1, 90.3 (d), 91.0 (s), 92.3, 92.6 (d), 109.8, 165.4, 230.5 (s). 3a: Orange crystals. Mp: 90 °C. 1H NMR (CDCl3, 250 MHz): δ = 3.88 (s, 6 H), 5.25 (t, 1 H, J = 6.6 Hz), 6.27 (dd, 2 H, J = 6.6 Hz, 1.1 Hz), 6.82 (br s, 1 H). 13C NMR (CDCl3, 63 MHz): δ = 53.0 (q), 87.2 (d), 87.7 (s), 95.5 (d), 165.1, 228.3 (s). rac-2b: Orange-reddish oil. 1H NMR (CDCl3, 250 MHz): δ = 2.63 (s, 3 H), 3.88 (s, 3 H), 5.21 (t, 1 H, J = 6.5 Hz), 5.78 (dd, 1 H,
J = 6.5 Hz, 0.8 Hz), 5.87 (dd, 1 H, J = 6.5 Hz, 0.8 Hz).
13C NMR (CDCl3, 63 MHz): δ = 17.2, 53.0 (q), 87.5 (d), 91.8 (s), 93.8, 94.9 (d), 108.0, 109.7, 166.3, 230.2 (s). 3b: Orange crystals. Mp: 93 °C. 1H NMR (CDCl3, 250 MHz): δ = 2.69 (s, 3 H), 3.86 (s, 6 H), 5.12 (t, 1 H, J = 6.6 Hz), 6.18 (d, 2 H, J = 6.6 Hz). 13C NMR (CDCl3, 63 MHz): δ = 17.8, 52.9 (q), 85.1 (d), 91.7 (s), 97.2 (d), 111.3, 166.2, 229.3 (s). rac-
2c: Orange-reddish oil. 1H NMR (C6D6, 300 MHz): δ = 3.34 (s, 3 H), 3.58 (s, 3 H), 3.97 (t, 1 H), 4.87 (d, 1 H), 5.19 (d, 1 H). 13C NMR (C6D6, 75 MHz): δ 52.8, 64.7 (q), 86.5 (d), 89.0 (s), 92.5, 94.0 (d), 105.3, 137.9, 164.8, 230.8 (s). 3c: Orange crystals. Mp: 109 °C. 1H NMR (CDCl3, 250 MHz): δ = 3.89 (s, 9 H), 4.94 (t, 1 H, J = 6.3 Hz), 6.19 (d, 2 H, 6.3 Hz). 13C NMR (CDCl3, 63 MHz): δ = 53.0, 65.1 (q), 83.8 (d), 86.2 (s), 96.2 (d), 142.1, 164.6, 228.6 (s).
Samples were taken from the reaction mixture in intervals of 15 min. After dilution with the HPLC eluent (i-propanol/n-hexane = 10:90) and filtration through Celite®, the mixtures were analyzed by HPLC (DAICEL Chiralcel OJ, external calibration).