Subscribe to RSS
DOI: 10.1055/s-2003-41428
Synthesis of (Bromo-η 4-2-pyrone)tricarbonyliron Complexes
Publication History
Publication Date:
22 September 2003 (online)
Abstract
The addition of the tricarbonyliron ‘Fe(CO)3’ unit to several bromo-substituted 2-pyrones has been investigated. Direct reaction with Fe2(CO)9 in benzene at 80 ºC results in poor yields and hydrodebromination. Switching the solvent to n-Bu2O, sequential addition of Fe2(CO)9 and slow passage of N2 through the solution improves the yields of the tricarbonyliron complexed 2-pyrones. Direct ‘Fe(CO)3’ transfer reagents such as (η 4-benzylideneacetone)tricarbonyliron or generic (η 4-1-azabuta-1,3-diene)tricarbonyliron complexes, under both stoichiometric and catalytic conditions, fails to give the desired complexes. Surprisingly, the unstable bis(η 2-cis-cyclooctene)Fe(CO)3 (Grevels’ reagent) did serve as a useful transfer reagent.
Key words
2-pyrones - tricarbonyliron - hydrodebromination - Grevels’ reagent
-
1a
Dickinson JM. Nat. Prod. Rep. 1993, 10: 71 -
1b
Vardaro RR.DiMarzo V.Crispino A.Cimino G. Tetrahedron 1991, 47: 5569 -
1c
Groutas WC.Stanga MA.Brubaker MJ.Huang TL.Moi MK.Carroll RT. J. Med. Chem. 1985, 28: 1106 -
2a
Lee J.-H.Kim W.-S.Lee YY.Cho C.-G. Tetrahedron Lett. 2002, 43: 5779 -
2b
Lee J.-H.Park J.-S.Cho C.-G. Org. Lett. 2002, 4: 1171 -
3a
Shi X.Leal WS.Liu Z.Schrader E.Meinwald J. Tetrahedron Lett. 1995, 36: 71 -
3b
Leal WS.Shi X.Liang D.Schal C.Meinwald J. Proc. Natl. Acad. Sci. U.S.A. 1995, 92: 1033 - 4
Cerezo S.Moreno-Mañas M.Pleixats R. Tetrahedron 1998, 54: 7813 -
5a
Marrison LR.Dickinson JM.Fairlamb IJS. Bioorg. Med. Chem. Lett. 2002, 12: 3509 -
5b
Marrison LR.Dickinson JM.Ahmed R.Fairlamb IJS. Tetrahedron Lett. 2002, 43: 8853 -
5c
Marrison LR.Dickinson JM.Ahmed R.Fairlamb IJS. Bioorg. Med. Chem. Lett. 2003, 13: 2667 - 6
Metal-Catalyzed Cross-Coupling Reactions
Diederich F.Stang PJ. Wiley-VCH; Weinheim: 1997. - 7
Semmelhack MF.Tamura R.Schnatter W.Springer J. J. Am. Chem. Soc. 1984, 106: 5363 - 8
Mitsudo T.Watanabe Y.Nakanishi H.Morishima I.Inubushi T.Takegami Y. J. Chem. Soc., Dalton Trans. 1978, 1298 - 9
Mitsudo T.Watanabe H.Sasaki T.Takegami Y.Watanabe Y.Kafuku K.Nakatsu K. Organometallics 1989, 8: 368 - 10
Mitsudo T.-A.Watanabe H.Sasaki T.Watanabe Y.Takegami Y.Kafuku K.Kinoshita K.Nakatsu K. J. Chem. Soc., Chem. Commun. 1981, 22 - 11
DePuy CH.Parton RL.Jones T. J. Am. Chem. Soc. 1977, 99: 4070 - 12
Rosenblum M.Gatsonis C. J. Am. Chem. Soc. 1967, 89: 5074 - 13
Seyferth D. Organometallics 2003, 22: 2 - 14
Cervera M.Moreno-Mañas M.Pleixats R. Tetrahedron 1990, 46: 7885 -
15a Reduction of 1,2,5,6-tetrabromopyracene by Fe2(CO)9 to produce pyracylene has been reported (in diethyl ether, 25 ºC), see:
Trost BM.Bright GM. J. Am. Chem. Soc. 1969, 91: 3689 -
15b For further reductions of Csp3-X bonds by Fe2(CO)9, see:
Efraty A. Chem. Rev. 1977, 77: 691 - 16
Brune HA.Horlbeck G.Zhorszky UIZ. Z. Naturforsch., B: Chem. Sci. 1971, 26: 222 -
17a
Banwell MG.Schuhbauer HM. Organometallics 1996, 15: 4078 -
17b
The dehalogenated tricarbonyliron complexes of 3-bromo and 4-bromo-tropone (2,4,6-cycloheptatrien-1-one) were not detected by Banwell’s group, private communication (2003).
-
18a
Harrity JPA.Kerr WJ.Middlemiss D. Tetrahedron Lett. 1993, 34: 2995 -
18b
Harrity JPA.Kerr WJ.Midlemiss D. Tetrahedron 1993, 49: 5565 -
18c
Harrity JPA.Kerr WJ.Middlemiss D.Scott JS. J. Organomet. Chem. 1997, 532: 219 -
18d
Caldwell JJ.Colman R.Kerr WJ.Magennis EJ. Synlett 2001, 1428 - 19
Knölker H.-J. Chem. Soc. Rev. 1999, 28: 151 ; and references cited therein -
20a
Sugihara T.Yamada M.Yamaguchi M.Nishizawa M. Synlett 1999, 771 -
20b
Kerr WJ.Lindsay DM.McLaughlin M.Pauson PL. Chem. Commun. 2000, 1467 - 22
Knölker H.-J.Baum E.Foitzik H.Goesmann P.Gonser P.Jones G.Röttele H. Eur. J. Inorg. Chem. 1998, 993 ; and references cited therein - 23
Fleckner H.Grevels F.-W.Hess D. J. Am. Chem. Soc. 1984, 106: 2027 -
24a
Knölker H.-J.Gonsor P. Synlett 1992, 517 -
24b
Knölker H.-J.Gonsor P.Jones PG. Synlett 1994, 405 - 25
Alcock NW.Richards CJ.Thomas SE. Organometallics 1991, 10: 231 - 26
Knölker H.-J.Baum E.Gonser P.Rohde G.Röttele H. Organometallics 1998, 17: 3916 - 27
Ley SV.Cox LR.Meek G. Chem. Rev. 1996, 96: 423 - 29 Compounds 21a and 21b gave satisfactory characterisation data (IR, 1H, 13C NMR, LRCI and HRCI). Compound 21a was accompanied by a side-product: (η
4-4-(4′-methoxy-phenyl)-6-methyl-2-pyrone)Fe(CO)2PPh3. The 31P NMR signal (δ 72.51) is similar to that reported for (η
4-1,3-cyclohexadiene)Fe(CO)2PPh3 (δ 70.2), see:
Howell JAS.Walton G.Tirvengadum M.-C.Squibb AD.Palin MG.McArdle P.Cunningham D.Goldschmidt Z.Gottlieb H.Strul G. J. Organomet. Chem. 1991, 401: 91
References
General procedure for complexation studies with Fe2(CO)9: Caution: Fe(CO)
5
and Fe
2
(CO)
9
are highly toxic; Fe(CO)
5
is volatile. To a dried Schlenk tube under N2 were added Fe2(CO)9 (0.5 equiv) and the recrystallised 2-pyrone (1 equiv). Degassed anhydrous n-Bu2O (10-12 mL per mmol) was added via cannula and the mixture stirred at 65 ºC for 0.5 h whilst N2 was bubbled through slowly. Two further portions of Fe2(CO)9 (0.5 equiv) were added at 0.5 h intervals. After 2 h, the mixture was allowed to cool to r.t. and the solvent removed in vacuo. Purification by column chromatography using petroleum ether (40-60 ºC)/ethyl acetate (9:1), which was increased to 3:1 after 10 fractions, gave the expected brominated pyrone complex, followed by starting material and then the hydrodebrominated 2-pyrone Fe(CO)3 complex. Note: On several occasions we have also isolated Fe3(CO)12 (dark green) in small quantities from the reactions (elutes first).
(
η
4
-4-Bromo-6-methyl-2-pyrone)tricarbonyl iron (11).
Rf = 0.45 (petroleum ether 40-60 ºC/ethyl acetate, 3:1). Mp 106-107 ºC (decomp.), dark orange solid. IR (CH2Cl2) 2075, 2010, 1743, 1604. δH (400 MHz, CDCl3) 1.88 (3 H, s, CH
3
), 3.38 (1 H, s, H3), 5.84 (1 H, s, H5). δC (100 MHz, CDCl3) 22.37 (CH3), 54.42 (C3), 81.34 (C5), 93.72 (C4), 98.59 (C6), 168.39 (C2), 206.32 (br, 3 × CO). LRCI m/z 346/348 (M + NH4Br79/Br78, 33%), 329/331 (MH+ Br79/Br81, 18%), 236, 219, 189/191 [M - Fe(CO)3] 128, 111 (M - Fe(CO)3 - Br, 100%). HRCI m/z exact mass calculated for C9H5O5BrFe 328.8747; Found, 328.8745.
(
η
4
-6-Methyl-2-pyrone)tricarbonyliron (12). Rf = 0.22 (petroleum ether 40-60 ºC/ethyl acetate, 3:1). Mp 94-95 ºC (decomp.), orange solid. IR (CH2Cl2) 2065, 1999, 1739, 1604 cm-1. δH (400 MHz, CDCl3) 1.91 (3 H, s, CH
3
), 2.94
(1 H, d, 3
J
HH = 5.9 Hz, H3), 5.45 (1 H, d, 3
J
HH = 3.3 Hz, H5), 6.15 (1 H, dd, 3
J
HH = 5.9 Hz, 3.3 Hz, H4). δC (100 MHz, CDCl3) 22.63 (CH3), 48.61 (C3), 76.41 (C5), 86.84 (C4), 104.19 (C6), 170.10 (C2), 207.62 (br, 3 × CO). LRCI m/z 268 (M + NH4, 97%), 251 (MH+, 100%), 128, 111 [M - Fe(CO)3, 48%]. HRCI m/z exact mass calculated for C9H6O5Fe 250.9642; Found, 250.9639.
(
η
4
-5-Bromo-2-pyrone)tricarbonyliron (15). Rf = 0.44 (petroleum ether 40-60 ºC/ethyl acetate, 3:1). Mp 73-75 ºC (decomp.), yellow solid. IR (CH2Cl2) 2066, 2002, 1740, 1604. δH (400 MHz, CDCl3) 2.95 (1 H, d, 3
J
HH = 6.3 Hz, H3), 5.68 (1H, d, 4
J
HH = 2.6 Hz, H6), 6.47 (1 H, dd, 3
J
HH = 6.3 Hz, 4
J
HH = 2.6 HZ, H4). δC (100 MHz, CDCl3) 45.47 (C3), 84.30 (C5), 90.40 (C6), 93.19 (C4), 159.44 (C2), 205.85 (br, 3 × CO). LRCI m/z 332/334 (M + NH4 Br79/Br81, 100%), 315/317 (MH+ Br79/Br81, 45%), 247/249 (Br79/Br81), 114, 97 [M - Fe(CO)3 - Br], 90. HRCI m/z exact mass calculated for C8H3O5BrFe 314.8591; Found, 314.8586.
The crystal structures of 11 and 12 have been deposited to the Cambridge Crystallographic Database (UK). Deposit numbers are CCDC 210379 and CCDC 210380, respectively.
Crystal data for 11. C9H5O5BrFe, M = 328.89, triclinic,
a = 6.562 (2), b = 7.091 (2), c = 12.565 (4) Å, U = 529.7 (3) Å3
, T = 113 (2) K, space group P-1, Z = 2, µ(Mo-Ka) = 1.546 mm-1, reflections measured 2902, unique 1858 (R
int = 0.0386) which were used in all calculations. The final wR(F
2) was 0.0992 (all data).
Crystal data for 12. C9H6O5Fe, M = 249.99, triclinic, a = 6.3565 (6), b = 7.5012 (7), c = 10.2161 (10) Å, U = 486.34 (8) Å3
, T = 113 (2) K, space group P-1, Z = 2, µ(Mo-Ka) = 1.546 mm-1, reflections measured 3864, unique 2702 (R
int = 0.0135) which were used in all calculations. The final wR(F
2) was 0.0760 (all data).