References
1a
Bowman WR.
Cloonan MR.
Krintel SL.
J. Chem. Soc., Perkin Trans 1
2001,
2885
1b
Robertson J.
Pillai J.
Lush RK.
Chem. Soc. Rev.
2001,
30:
94
1c
Cossy J.
Recent Res. Dev. Synth. Org. Chem.
1999,
2:
23
1d
Bowman WR.
Bridge CF.
Brookes P.
J. Chem. Soc., Perkin Trans 1
2000,
1
1e
Banik BK.
Curr. Org. Chem.
1999,
3:
469
1f
Giese B.
Kopping B.
Gobel T.
Dickhaut J.
Thoma G.
Kulicke KJ.
Trach F.
Org. React.
1996,
48:
301
2a
Curran DP.
Porter NA.
Giese B. In Stereochemistry of Radical Reactions: Concepts, Guidelines and Synthetic Applications
VCH;
Weinheim:
1995.
2b
Rajan Babu TV.
Acc. Chem. Res.
1991,
24:
139
3
Fossey J.
Lefort D.
Sorba J.
Free Radicals in Organic Chemistry
Wiley;
New York:
1995.
4
Baguley PA.
Walton JC.
Angew. Chem., Int. Ed.
1998,
37:
3072
5a
Curran DP.
Synthesis
1988,
417
5b
Curran DP.
Synthesis
1988,
489
6 For related applications in polymer chemistry see: Matyjaszewski K.
Chem.-Eur. J.
1999,
5:
3095
7
Gaynor S.
Qiu J.
Matyjaszewski K.
ACS Symposium Series
2002,
823:
113
8 See: Clark AJ.
Chem. Soc. Rev.
2002,
31:
1
9
Nagashima H.
Wakamatsu H.
Itoh K.
Tomo Y.
Tsuji J.
Tetrahedron Lett.
1983,
24:
2395
10
Nagashima H.
Wakamatsu H.
Nobuyasu O.
Tsutomu I.
Watanabe M.
Tajima T.
Itoh K.
J. Org. Chem.
1992,
57:
1682
11a
De Campo F.
Lastecoueres D.
Verlhac J.
J. Chem. Soc., Perkin Trans. 1
2000,
575
11b
Clark AJ.
Battle GM.
Heming AM.
Haddleton DM.
Bridge A.
Tetrahedron Lett.
2001,
42:
2003
12a
Clark AJ.
Filik RP.
Haddleton DM.
Radigue A.
Sanders CJ.
Thomas GH.
Smith ME.
J. Org. Chem.
1999,
64:
8954
12b
Shen Y.
Zhu S.
Pelton R.
Macromolecules
2001,
34:
3182
13a
Nagashima H.
Ara K.-I.
Wakamatsu H.
Itoh K.
J. Chem. Soc., Chem. Commun.
1985,
518
13b For modified Ru catalysts see: Nagashima H.
Gondo M.
Masuda S.
Kondo H.
Yamaguchi Y.
Matsubara K.
Chem. Commun.
2003,
442
14
Nagashima H.
Seki K.
Ozaki N.
Wakamatsu H.
Itoh K.
Tomo Y.
Tsuji J.
J. Org. Chem.
1990,
55:
985
15a
Lee GM.
Parvez M.
Weinreb SM.
Tetrahedron
1988,
44:
4671
15b
Terent’ev AB.
Vasil’eva TT.
Kuz’mina NA.
Ikonnikov NS.
Orlova SA.
Mysov EI.
Belokon YN.
Russ. Chem. Bull.
1997,
46:
2096
16
Tallarico JA.
Malnick LM.
Snapper ML.
J. Org. Chem.
1999,
64:
344
17a
Simal F.
Demonceau A.
Noels AF.
Tetrahedron Lett.
1999,
40:
5689
17b
Simal F.
Delfosse S.
Demonceau A.
Noels AF.
Denk K.
Kohl FJ.
Weskamp T.
Herrmann WA.
Chem.-Eur. J.
2002,
8:
3047
17c
Bielawski CW.
Louie J.
Grubbs RH.
J. Am. Chem. Soc.
2000,
122:
12872
17d For an overview of the use of Grubbs catalyst in non-metathesis reactions see: Alcaide B.
Almendros P.
Chem.-Eur. J.
2003,
9:
1258
17e For mechanistic insights see: Amir-Ebrahimi V.
Hamilton JG.
Nelson J.
Rooney JJ.
Rooney AD.
Harding CJ.
J. Organomet. Chem.
2000,
606:
84-87
17f
Amir-Ebrahimi V.
Hamilton JG.
Nelson J.
Rooney JJ.
Thompson JM.
Beaumont AJ.
Rooney AD.
Harding CJ.
Chem. Commun.
1999,
1621
18
Yorimitsu H.
Nakamura T.
Shinokubo H.
Oshima K.
Omoto K.
Fujimoto H.
J. Am. Chem. Soc.
2000,
122:
11041
19 Note that the effect of temperature on reactive rotamer population should not be forgotten in these cyclisation reactions, see: Curran DP.
Tamine J.
J. Org. Chem.
1991,
56:
2746
20
Cyclisation of Ester 10 to Lactone 11 Using Catalyst 3 is Representative: A dry flask was charged with the Grubbs catalyst 3 (169.7 mg, 5 mol%, Strem) and toluene (5 mL). The contents of the flask were degassed (three times using freeze-thaw cycle) to which was added, by syringe, a solution of the trichloroacetate 10 (1.0 g, 4.12 mmol) in toluene (3 mL). After degassing (three times, freeze-thaw cycle) the reaction mixture was brought to a gentle reflux under argon for 3.5 h. The toluene was removed under reduced pressure and the crude product chromatographed (‘flash’ silica, eluent: 10% EtOAc-petroleum ether) to afford the lactone 11 as a white solid (mp 56-58 °C) in 75% yield. 1H NMR (300 MHz, CDCl3) δ: 2.2 (2 H, m, CH2), 2.4 (2 H, m, CH2), 2.95 (1 H, dt, J = 13, 4.4 Hz), 5.1 (1 H, t, J = 4.4 Hz), 6.0 (1 H, m, olefin), 6.3 (1 H, m, olefin). 13C NMR (75 MHz, CDCl3) δ: 167.1, 136.2, 121.0, 82.9, 60.3, 50.44, 23.8, 21.7. IR (cm-1, CHCl3): 1793, 1755. m/e (CI) 224 (100%) (M + NH4)+, 190 (45%). HRMS: C8H8O2
35Cl2, calcd: 205.9901; found: 205.9901.
21 The cyclisation of 1 was reported by Nagashima
[9]
to be highly diastereoselective although a stereochemical assignment was not made.
22 Stereochemical assignment is based on a single crystal x-ray diffraction study. Crystal data for 2: C11H9Cl3O2, M
r = 279.53, orthorhombic, a = 8.737(2), b = 18.214(3), c = 7.5929(4), V = 1198.2(4) Å3, T = 296.2 K, space group P2121, Z = 4, CuKα radiation, 1.5418 Å, 1306 independent reflections. Final wR(F2) was 0.1092 (on 1306 reflections). Crystal data for 7: C17H13Cl3O2, M
r = 355.62, triclinic, a = 10.121, b = 9.776, c = 9.946, V = 790.5 Å3, T = 293 K, space group P1, Z = 2, MoKα radiation, 0.71609 Å, 2676 independent reflections. Final wR(F2) was 0.1305 (on 2676 reflections). A similar stereochemical outcome is reported for the cyclisation of an analogous amide deriveative, see: Parvez M.
Lander SW.
DeShong P.
Acta Crystallogr., Sect. C
1992,
48:
568
23
Kosugi H.
Tagami K.
Takahashi A.
Kanna H.
Uda H.
J. Chem. Soc., Perkin Trans. 1
1989,
935
24
Pearson AJ.
Khan M.
Nazrul I.
Clardy JC.
He CH.
J. Am. Chem. Soc.
1985,
107:
2748
Intermolecular Kharasch reactions with dienes has been reported, see:
25a
Startsev VV.
Zubritskii LM.
Sobolev VG.
Petrov AA.
Zh. Obshch. Khim.
1985,
55:
702
25b
Shvekhgeimer GA.
Kobrakov KI.
Popandopulo NG.
Dokl. Akad. Nauk SSSR
1988,
302:
351
25c
Startsev VV.
Zubritskii LM.
Petrov AA.
Zh. Obshch. Khim.
1988,
58:
1592
See for representative examples:
26a
Ghelfi F.
Bellesia F.
Forti L.
Ghirardini G.
Grandi R.
Libertini E.
Montemaggi MC.
Pagnoni UM.
Pinetti A.
De Buyck L.
Parsons AF.
Tetrahedron
1999,
55:
5839
26b
Clark AJ.
De Campo F.
Deeth RJ.
Filik RP.
Gatard S.
Hunt NA.
Lastecoueres D.
Thomas GH.
Verlhac J.
Wongtap H.
J. Chem Soc., Perkin Trans. 1
2000,
671
26c
Jones K.
McCarthy C.
Tetrahedron Lett.
1989,
30:
2657
27 Trichloroacetamides were prepared from the respective sulfonamides by acylation with trichloroacetylchloride. The following procedures are representative:
Synthesis of sulfonamide 23 (Scheme
[4]
).
To a solution of camphorsulfonyl chloride (13.2 g, 52.69 mmol) in dichloromethane (20 mL) was added a mixture of triethylamine (7.32 mL, 1 equiv) and allylamine (3.9 mL, 2 equiv) in anhydrous dichloroethane (20 mL). The reaction mixture was left at r.t. for 3 h and then poured into Et2O and partitioned with 1 M HCl (100 mL). The organic layer was separated, dried (MgSO4) and concentrated in vacuo to afford the sulfonamide 19 in 90% yield as a yellow solid (mp 50-51 °C). This material was sufficiently pure to be used directly in the next step. 1H NMR (300 MHz, CDCl3) δ (ppm): 0.95 (3 H, s, Me), 1.05 (3 H, s, Me), 2.0-2.4 (7 H, m), 2.95 (1 H, d, J = 15.1 Hz, CH2SO), 3.4 (1 H, d, J = 15.1 Hz, CH2SO), 3.85 (2 H, m, CH2CH=CH2), 5.25 (2 H, m, CH=CH2), 5.95 (1 H, m, CH=CH2). 13C NMR (75 MHz, CDCl3) δ (ppm): 216.9, 133.6, 117.6, 59.1, 50.2, 50.2, 48.7, 46.1, 46.0, 42.8, 26.9, 26.6, 19.8, 19.4. IR (cm-1, CHCl3): 3290, 2960, 1741. m/e
(CI) 289 [(M + NH4)+, 100%], 272 (100%), 215 (80%). HRMS: C13H22O3SN, (M + H)+ calcd: 272.1320; found: 272.1320. The sulfonamide 19 (2.0 g, 7.38 mmol) was dissolved in methanol (20 mL) to which was added sodium borohydride (0.3 g, 1.0 equiv) and the resulting solution left to stir at 0 °C until all the starting material had been consumed (TLC). The reaction mixture was concentrated in vacuo and partitioned between water (150 mL) and Et2O (5 × 50 mL). The organic extracts were dried (MgSO4), concentrated in vacuo and the residue chromatographed (‘flash’ silica; eluent: 20% EtOAc-petroleum ether) to afford the alcohol 22 as a viscous oil (95% yield). 1H NMR (300 MHz, CDCl3) δ (ppm): 0.8 (3 H, s, Me), 1.0 (3 H, s, Me), 1.4-1.8 (7 H, m), 2.9 (1 H, d, J = 13.7 Hz, CH2SO), 3.16 (1 H, d, J = 8.7 Hz, OH), 3.4 (1 H, d, J = 13.7 Hz, CH2SO), 3.85 (2 H, t, J = 6.0 Hz, CH2CH=CH2), 4.1 (1 H, dd, J = 4.1, 7.7 Hz, CH-OH), 4.4 (1 H, bt, J = 6.0 Hz, NH), 5.2 (2 H, m, CH=CH2), 5.8 (1 H, m, CH=CH2). 13C NMR (75 MHz, CDCl3) δ (ppm): 133.6, 117.9, 80.5, 52.9, 50, 40.8, 45.7, 44.3, 38.9, 30.4, 27.2, 20.4, 19.7. IR (cm-1, CHCl3): 3515, 3285, 2953. m/e
(CI): 291 [(M + NH4)+, 30%], 256 (100%). HRMS: C13H23O3SN, (M+H)+ calcd: 274.1477; found: 274.1477. To a solution of the sulfonamide 22 (1.6 g; 5.86 mmol) in anhydrous THF (15 mL) at -78 °C was added n-BuLi (4.4 mL, 1.2 equiv, 1.6 M solution in hexanes). After 30 min at -78 °C trichloroacetylchloride (0.72 mL, 1.1 equiv) was added and the reaction mixture left to stir at this temperature for period of two hours. On warming up to 0 °C the reaction was quenched with saturated ammonium chloride solution (50 mL) and extracted with Et2O (3 × 50 mL). The organic extracts were dried (MgSO4), concentrated in vacuo and the residue chromatographed (‘flash’ silica; eluent: 20% EtOAc-petroleum ether) to afford the sulfonamide 26 as a viscous colourless oil (90% yield). 1H NMR (300 MHz, CDCl3) δ (ppm): 0.9 (3 H, s, Me), 1.05 (3 H, s, Me), 1.4-1.8 (7 H, m), 3.4 (1 H, d, J = 13.2 Hz, CH2SO), 3.95 (1 H, d, J = 13.2 Hz, CH2SO), 4.2 (1 H, dd, J = 4.1, 7.6 Hz, CH-OH), 4.8 (2 H, m, CH2-CH=CH2), 5.45 (2 H, m, CH=CH2), 6.0 (1 H, m, CH=CH2). 13C NMR (75 MHz, CDCl3) δ (ppm): 163.6, 131.5, 120.5, 90.0, 76.3, 55.3, 50.9, 50.6, 49.2, 44.3, 38.9, 30, 27.2, 20.5, 19.7. IR (cm-1, CHCl3): 3568, 2955, 1760, 1707. m/e (CI): 435 [(M + NH4)+, 70%], 234 (35%), 108 (100%). HRMS: C15H22O4SN35Cl3 calcd: 417.0335; found: 417.0335.
28 Catalyst loadings of 30 mol% are not untypical for such reactions, especially for the cyclisation of esters to lactones, as noted in ref.
[14]