References
1
Kawanami Y.
Yamamoto K.
Synlett
1995,
1232
2
Kawanami Y.
Yamamoto K.
43rd Symposium on Organometallic Chemistry, Abstr. PB114
Osaka;
Japan:
1996.
3a
Tamao K.
Kobayashi K.
Ito Y.
J. Am. Chem. Soc.
1989,
111:
6478
3b
Tamao K.
Kobayashi K.
Ito Y.
Synlett
1992,
539
3c For a related Ni(0)-catalyzed dimerization of 1-alkynes, see: Lappert MF.
Nile TA.
Takahashi S.
J. Organomet. Chem.
1974,
72:
425
4a
Widenhoefer RA.
DeCarli MA.
J. Am. Chem Soc.
1998,
120:
3805
4b
Stengone CN.
Wiedenhoefer RA.
Tetrahedron Lett.
1999,
40:
1451
4c
Perch NS.
Pei T.
Widenhoefer RA.
J. Am. Chem. Soc.
1999,
121:
6960
4d
Widenhoeder RA.
Stengone CN.
J. Org. Chem.
1999,
64:
8681
4e
Widenhoefer RA.
Vadehra A.
Tetrahedron Lett.
1999,
40:
8499
4f
Pei T.
Widenhoefer RA.
Org. Lett.
2000,
2:
1469
4g
Perch NS.
Pei T.
Widenhoefer RA.
J. Org. Chem.
2000,
65:
3836
4h
Pei T.
Widenhoefer RA.
Tetrahedron Lett.
2000,
41:
7597
5a
Madine JW.
Wang X.
Widenhoefer RA.
Org. Lett.
2001,
3:
385
5b
Wang X.
Chakrapani H.
Madine JW.
Widenhoefer RA.
J. Org. Chem.
2002,
67:
2778
6a
Maruoka T.
Matsuda I.
Itoh K.
Organometallics
2002,
21:
3650
6b
Muraoka T.
Matsuda I.
Itoh K.
Tetrahedron Lett.
1998,
39:
7325
6c
Ojima I.
Vu AT.
McCullagh JV.
Kinoshita A.
J. Am. Chem. Soc.
1999,
121:
3230
6d
Liu C.
Widenhoefer RA.
Organometallics
2002,
21:
5666
6e For a similar rhodium-catalyzed silylcarbo-cyclization, but restricted within 1,6-enynes, see: Ojima I.
Vu AT.
Lee S.-Y.
McCullagh JV.
Moralee AC.
Fujiwara M.
Hoang TH.
J. Am. Chem. Soc.
2002,
124:
9164
7 Typical procedure for the cyclization-hydrosilylation of 1 with HSiCl3 is as follows: In a 10 mL screw-capped glass tube were placed, under an argon atmosphere, 1 (0.208 g, 1.0 mmol), the catalyst precursor B (2.0 mg, 5 × 10-3 mmol, 0.5 mol%), and HSiCl3 (2 M CH2Cl2 solution 0.55 mL, 1.1 mmol) diluted with dry CH2Cl2 (0.45 mL). The orange-yellow clear solution was magnetically stirred for 24 h at r.t. GLC (10% Silicone SE-30 on uniport B, 3 mm × 3 m column, programmed 100˜280 °C) analysis of the reaction mixture revealed recovered 1 (ca.4%) and the product peaks (96%) in a ratio 8:92 (T
R = 16.8 and 17.7 min). The whole mixture was treated with dry EtOH (0.20 mL, 3.3 mmol) and Et3N (0.46 mL, 3.3 mmol) dissolved in CH2Cl2 (6 mL) for 2 h in an ice-water bath. The turbid solution formed was filtered through a celite plug, the latter being rinsed with dry hexane, and the combined filtrate was thoroughly concentrated by rotary evaporation. The crude products (0.332 g, ca. 89%), in a ratio 8:92 (T
R = 18.2 and 19.3 min), was subjected to a bulb-to-bulb distillation (150-170 °C/3 Torr) to give pure 2b as a colorless liquid (0.207 g, 56% yield), the probable (E)-isomer being hard to be detected within an accuracy of NMR spectra.
8 Spectral data for 2b: 1H NMR (270 MHz, CDCl3):
δ (ppm) = 1.21 (t, J = 6.9 Hz, 1 H), 3.08 (br t, J = 2.2 Hz,
2 H), 3.13 (br d, J = 1.7 Hz, 2 H), 3.72 (s, 6 H), 3.80 (q, J = 6.9 Hz, 6 H), 5.17 (br t, J = 2.2 Hz, 1 H), 5.32 (br t, J = 2.0 Hz, 1 H), 5.95 (t, J = 2.3 Hz, 1 H). 13C NMR (67.8 MHz): δ (ppm) = 18.1 (× 3), 42.1, 45.1, 52.8, 56.9, 58.4 (× 3), 112.0, 112.5, 143.7, 158.3, 171.6.
9 Spectral data for 4b: 1H NMR: δ = 1.20 (t, J = 6.9 Hz, 9 H), 1.85 (s, 3 H), 3.00 (t, J = 1.7 Hz, 2 H), 3.07 (d, J = 1.3 Hz, 2 H), 3.75 (s, 6 H), 3.77 (q, J = 6.9 Hz, 6 H), 5.04 (s, 1 H), 5.73 (s, 1 H). 13C NMR: δ = 18.1 (× 3), 20.0, 40.4, 42.7, 52.8, 56.4, 58.3 (× 3), 111.1, 122.0, 144.3, 151.8, and 171.9.
10 Spectral data for (Z)-6′b: 1H NMR: δ = 1.23 (t, J = 6.9 Hz, 9 H), 1.82 (br s, 3 H), 3.82 (q, J = 6.9 Hz, 6 H), 4.47 (t, J = 2.0 Hz, 2 H), 4.55 (d, J = 1.3 Hz, 2 H), 5.09 (d, J = 0.66 Hz, 1 H), 5.96 (t, J = 2.0 Hz, 1 H). 13C NMR: δ = 18.1 (× 3), 19.7, 58.5 (× 3), 73.4, 74.5, 108.0, 120.9, 143.1, 150.9. The stereochemistry was determined by NOE experiments (NOE, Figure
[1]
).
It was found that pure (Z)-6′b, dissolved in degassed CDCl3 in a sealed NMR tube, isomerized significantly to (E)-6′b in months: Z/E = 30/70. (E)-6′b: 1H NMR: δ = 1.24 (t, J = 6.9 Hz, 9 H), 2.05 (t, J = 2.0 Hz, 3 H), 3.83 (q, J = 6.9 Hz, 6 H), 4.43 (t, J = 2.0 Hz, 2 H), 4.60 (q, J = 2.0 Hz, 2 H), 5.27 (t, J = 2.0 Hz, 1 H), 5.45 (br s, 1 H).
11 Spectral data for (Z)-10b (estimated 84%): 1H NMR: δ = 1.22 (t, J = 6.9 Hz, 9 H), 1.67 (m, 4 H), 2.27 (m, 2 H), 2.33 (m, 2 H), 3.79 (q, 6.9 Hz, 6 H), 4.80 (d, J = 1.3 Hz, 1 H), 5.00 (d, J = 1.5 Hz, 1 H), 5.07 (d, J = 1.7 Hz, 1 H). 13C NMR: δ = 18.2 (× 3), 27.5, 27.7, 36.6, 41.1, 58.3 (× 3), 110.5 112.1, 149.4, 164 8. (E)-10b (estimated 16%): 1H NMR: δ = 1.19 (t, J = 6.9 Hz, 9 H), 3.78 (q, J = 6.9 Hz, 6 H), 4.78 (br s, 1 H), 5.02 (br s, 1 H), 5.11 (d, J = 2.3 Hz, 1 H). Other signals are overlapped with those of Z-isomer. 13C NMR (diagnostic signals): δ = 110.7, 113.4, 149.3, 163.8.
12 Spectral data for 12b: 1H NMR: δ = 1.21 (t, J = 6.9 Hz, 9 H), 1.59 (br s, 6 H), 2.34 (m, 2 H), 2.42 (m, 2 H), 3.78 (q, J = 6.9 Hz, 6 H), 4.87 (dt, J = 2.0, 1.3 Hz, 1 H), 5.07 (t, J = 1.3 Hz, 1 H), 5.18 (d, J = 2.0 Hz, 1 H). 13C NMR: δ = 18.21 (× 3), 28.7, 29.4, 30.9, 35.5, 40.4, 49.7, 58.3 (× 3), 113.4, 114.6, 151.9, 167.7.
13
Amatore C.
Jutand A.
Meyer G.
Carelli I.
Chiaretto I.
Eur. J. Inorg. Chem.
2000,
1855
14a
Trost BM.
Romero DL.
Rise F.
J. Am. Chem. Soc.
1994,
116:
4268
14b
Trost BM.
Chem.- Eur. J.
1998,
4:
2405
15
Aggarwal VK.
Butters M.
Davies PW.
Chem. Commun.
2003,
1046
16a
Maruyama Y.
Yamamura K.
Sagawa T.
Katayama H.
Ozawa F.
Organometallics
2002,
19:
1308
16b For a pertinent review, see: Ozawa F.
J. Organomet. Chem.
2000,
611:
332
17 Spectral data for an adduct of 2c with N-methylmaleimide: 1H NMR: δ = 0.13 (s, Me), 1.21 and 1.22 (t, J = 6.9 Hz, diastereotopic Me), 2.37 (br s, 1 H), 2.46 (br s, 2 H), 2.84-3.24 (m, 6 H), 2.95 (s, 3 H), 3.69 and 3.71 (s, 2 × Me), 3.78 and 3.79 (q, J = 6.9 Hz, diastereotopic methylene). 13C NMR: δ = -5.80, 18.35, 24.31, 25.28, 26.00, 39.28, 39.55, 43.56, 44.01, 52.71, 52.76, 57.68, 58.58 and 58.65 (diastereotopic methylene), 128.25, 131.68, 172.20, 172.51, 180.59, 180.79.