Horm Metab Res 2003; 35(7): 415-420
DOI: 10.1055/s-2003-41622
Original Clinical
© Georg Thieme Verlag Stuttgart · New York

Regulation of Hepatic Glucocorticoid Receptors in Mice During Dietary Restriction

D.  Dutta1 , R.  Sharma1
  • 1Department of Biochemistry, North Eastern Hill University, Shillong 793 022, India
Further Information

Publication History

Received 25 November 2002

Accepted after Revision 18 February 2003

Publication Date:
21 August 2003 (online)

Abstract

The specific binding of [3H] dexamethasone to its receptor, activation of the hormone-receptor complexes and DNase I digestion of nuclear bound hormone-receptor complexes were studied in the liver of mice during dietary restriction (alternate days of feeding for 3 months) compared to animals fed ad libitum. Results indicate an increase of receptor level (fmol/mg protein) in the diet-restricted (DR) animals as compared to those fed ad libitum (AL). Scatchard analyses confirm the increase in the level of receptors in DR animals, while the affinity (Kd) remained same in both groups of mice. Protein slot-blot analysis also depicts the increase of the receptor level in DR fed compared to the AL fed animals. The extent of temperature- and salt-dependent activation of receptors showed no marked difference in AL- and DR-fed mice. DNase I extraction of bound hormone-receptor complexes from nuclei revealed similar pattern of digestion in both groups of animals.

References

  • 1 Baxter J D, Forsham P H. Tissue effects of glucocorticoids.  Am J Med. 1972;  53 573-589
  • 2 Kalimi M, Gupta S. Physicochemical characterization of rat liver glucocorticoid receptor during development.  J Biol Chem. 1982;  257 (22) 13 324-13 328
  • 3 Gustafsson J A, Duke J C, Stromstedt P E, Wikstrom A C, Denis M, Okret S, Dong Y. Structure, function and regulation of glucocorticoid receptor.  In: Molecular Endocrinology and Steroid Hormone Action. Alan R Liss, Inc 1990: 65-80
  • 4 Kalimi M. Glucocorticoid receptors: From development to aging, a review.  Mech Aging Dev. 1984;  24 129-138
  • 5 Sharma R. Glucocorticoid receptor: retrospective and perspective.  Ind J Biochem Biophys. 1988;  25 377-384
  • 6 Borbhuiya M A, Sharma R. Physicochemical characterization of hepatic glucocorticoid receptors from pre- and post-weaned mice.  Ind J Biochem Biophys. 1993;  36 240-247
  • 7 Tsai M J, O'Malley B W. Molecular mechanisms of action of steroid/thyroid receptor superfamily member.  Ann Rev Biochem. 1993;  63 451-486
  • 8 Gehring U. The structure of glucocorticoid receptors.  J Steroid Biochem Mol Biol. 1993;  45 183-190
  • 9 Muller M, Renkawitz R. The glucocorticoid receptor.  Biochim Biophys Acta. 1991;  1088 171-182
  • 10 Pratt W B. The role of heat shock proteins in regulating the function, folding and trafficking of the glucocorticoid receptors.  J Biol Chem. 1992;  268 21 455-21 458
  • 11 Hutchison K A, Scherrer L C, Czar M J, Stancato L F, Chow Y H, Jove R, Pratt W B. Regulation of glucocorticoid receptor fuction through assembly of a receptor-heat shock protein complex.  Ann NY Acad Sci. 1993;  684 35-48
  • 12 Pratt W B, Scherrer L C, Hutchison K A, Dalman F C. A model of glucocorticoid receptor unfolding and stabilization by a heat shock protein complex.  J Steroid Biochem Mol Biol. 1992;  41 223-229
  • 13 Sharma R. Glucocorticoid actions and biomodulators: an integrated biological control.  Ind J Biochem Biophys. 1991;  28 159-163
  • 14 Deibel M R, Pratt W B. Characterization of the protein-protein interactions determining the heat shock protein (hsp 90, hsp 70, hsp 56) heterocomplex.  J Biol Chem. 1994;  269 11 155-11 161
  • 15 Weindruch R. Caloric restriction and aging.  Sci Am. 1996;  274 (1) 46-52
  • 16 Kristal B S, Yu B P. In: Modulation of Aging Processes by Dietary Restriction. Boca Raton Florida; CRC press 1994: 580-587
  • 17 Pahalavani M A. Caloric restriction and immunosenescence: a current perspective.  Front Biosc. 2000;  5 580-587
  • 18 Chandrasekar B, Nelson J F, Colston J T, Freeman G L. Caloric restriction attenuates inflammatory responses to myocardial ischemia reperfusion injury.  Am J Physiol Heart Circ Physiol. 2001;  280 (5) H2094-2102
  • 19 Weindruch R, Walford R. In: The Retardation of Aging and Diseases by Dietary Restriction,. IL; Thomas Springfield 1988: 231-286
  • 20 Lee J, Herman J P, Mattson M P. Dietary Restriction selectively decreases GR expression in the hippocampus and cerebral cortex of rats.  Exp Neurol. 2000;  166 (2) 435-441
  • 21 Whorwood C B, Firth K M, Budge H, Symonds M E. Maternal undernutrition during early to midgestation programs tissue-specific alterations in the expressions of the GR, 11 β-hydroxysteroids dehydrogenase isoforms, and type I angiotensin ii receptor in neonatal sheep.  Endocrinol. 2001;  142 (7) 2854-2864
  • 22 Roth G S, Ingram D K, Black A, Lane M A. Effects of reduced energy intake on the biology of aging: the primate model.  Eur J Clin Nutr. 2000;  54 15-20
  • 23 Mattson M P, Duan W, Lee J, Guo Z. Suppression of brain aging and neurodegenerative disorders by DR and environmental enrichment: molecular mechanisms.  Mech Aging Dev. 2001;  122 (7) 757-778
  • 24 van Remmen H, Guo Z, Richardson A. The anti-aging action of dietary restriction.  Novartis Found Symp. 2000;  235 221-230
  • 25 Ramsey J, Colman R J, Binkley N C, Christensen J D, Gresl T A, Kemnitz J W, Weindruch R. Dietary restriction and aging in rhesus monkeys: the University of Wisconsin study.  Exp Gerontol. 2000;  35 (9 - 10) 1131-1149
  • 26 Mattson M P. Neuroprotective signaling and the aging brain: take away my food and let me run.  Brain Res. 2000;  886 (1 - 2) 47-53
  • 27 Merry B J. In: Studies of Aging. Sternberg H, Timiras PS, ed Berlin; Springer Verlag 1999: 143-163
  • 28 Beato M, Fiegelson P. Glucocorticoid-binding proteins of rat liver cytosol I. separation and identification of the binding proteins.  J Biol Chem. 1972;  247 7890-7896
  • 29 Scatchard G. The attractions of protein for small molecules and ions.  Ann NY Acd Sci. 1949;  51 660-672
  • 30 Sharma R, Timiras P S. Age-dependent regulation of glucocorticoid receptor in the liver of male rats. Biochim. Biophys.  Acta.. 1987;  930 237-243
  • 31 Kalimi M, Coleman P, Fiegelson P. The activated hepatic glucocorticoid receptor complex: its generation and properties.  J Biol Chem. 1975;  250 1080-1086
  • 32 Eberhardt N L, Valcana T, Timiras P S. Triiodothyronine nuclear receptors: an in vitro comparison of the binding of triiodothyronine to nuclei of adult rat liver, cerebral hemisphere, and anterior pitutary.  Endocrinol. 1978;  102 556-561
  • 33 Chaturvedi M M, Kanungo M S. Analysis of chromatin of the brain of young and old rats by micrococcal nuclease and DNase I.  Biochem Intl. 1983;  6 357-363
  • 34 Ranhotra H S, Sharma R. Modulation of hepatic and renal glucocorticoid receptor during aging of mice.  Biogerontol. 2001;  2 248-251
  • 35 Bradford M A. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 36 Burton K. Determination of DNA concentration with diphenylamine.  In: Methods of Enzymology. 1968;  12 (B) 163-166
  • 37 Weindruch R, Keenan K P, Carney J M, Fernandes G, Feuers R J, Floyd R A, Halter J B, Ramsey J J, Richardson A, Roth G S, Spindler S R. Caloric restriction mimetics: metabolic interventions.  J Gerontol. 2001;  56A (I) 20-33
  • 38 Dhahbi J M, Mote P L, Wingo J, Tillman J B, Walford R L, Spindler S R. Calories and aging alter gene expression for gluconeogenic, glycolytic, and nitrogen-metabolizing enzymes.  Am J Physiol. 1999;  277 E352-E360

Dr. R. Sharma, Ph. D.

Phone: + 91 (364) 2550107

Fax: + 91 (364) 2550108

Email: rsharma@nehu.ac.in