Horm Metab Res 2003; 35(8): 460-465
DOI: 10.1055/s-2003-41802
Original Basic
© Georg Thieme Verlag Stuttgart · New York

Beneficial Effect Of Pretreatment Of Islets With Fibronectin On Glucose Tolerance After Islet Transplantation

Y.  Hamamoto1, 2 , S.  Fujimoto1 , A.  Inada1, 2 , M.  Takehiro1 , K.  Nabe1 , D.  Shimono1 , M.  Kajikawa1 , J.  Fujita1 , Y.  Yamada1 , Y.  Seino1
  • 1Department of Metabolism and Clinical Nutrition, Graduate School of Medicine, Kyoto University, Japan
  • 2Joslin Diabetes Center, Harvard Medical School, Section of Islet Transplantation and Cell Biology, Boston, MA, USA
Further Information

Publication History

Received 9 December 2002

Accepted after revision 7 April 2003

Publication Date:
02 September 2003 (online)

Abstract

The scarcity of available islets is an obstacle for clinically successful islet transplantation. One solution might be to increase the efficacy of the limited islets. Isolated islets are exposed to a variety of cellular stressors, and disruption of the cell-matrix connections damages islets. We examined the effect of fibronectin, a major component of the extracellular matrix, on islet viability, mass and function, and also examined whether fibronectin-treated islets improved the results of islet transplantation. Islets cultured with fibronectin for 48 hours maintained higher cell viability (0.146 ± 0.010 vs. 0.173 ± 0.007 by MTT assay), and also had a greater insulin and DNA content (86.8 ± 3.6 vs. 72.8 ± 3.2 ng/islet and 35.2 ± 1.4 vs. 30.0 ± 1.5 ng/islet, respectively) than islets cultured without fibronectin (control). Absolute values of insulin secretion were higher in fibronectin-treated islets than in controls; however, the ratio of stimulated insulin secretion to basal secretion was not significantly different (206.9 ± 23.3 vs. 191.7 ± 20.2 % when the insulin response to 16.7 mmol/l glucose was compared to that of 3.3 mmol/l glucose); the higher insulin secretion was thus mainly due to larger islet cell mass. The rats transplanted with fibronectin-treated islets had lower plasma glucose and higher plasma insulin levels within 2 weeks after transplantation, and had more favorable glucose tolerance 9 weeks after transplantation. These results indicate that cultivation with fibronectin might preserve islet cell viability, mass and insulin secretory function, which could improve glucose tolerance following islet transplantation.

References

  • 1 Shapiro A MJ, Lakey J RT, Ryan E A, Korbutt G S, Toth E, Warnock G L, Kneteman N M, Rajotte R V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid - free immunosuppressive regimen.  N Engl J Med. 2000;  343 230-238
  • 2 Rosenberg L, Wang R, Paraskevas S, Maysinger D. Structural and functional changes resulting from islet isolation lead to islet cell death.  Surgery. 1999;  126 393-398
  • 3 Meredith J E, Fazeli B, Schwartz M A. The extracellular matrix as a cell survival factor.  Mol Biol Cell. 1993;  4 953-961
  • 4 Brendel M D, Kong S S, Alejandro R, Mintz D H. Improved functional survival of human islets of Langerhans in three - dimensional matrix culture.  Cell Transplant. 1994;  3 427-435
  • 5 Jiang F X, Cram D S, DeAizpurua H J, Harrison L C. Laminin-1 promotes differentiation of fetal mouse pancreatic beta-cells.  Diabetes. 1999;  48 722-730
  • 6 Ilieva A, Yuan S, Wang R N, Agapitos D, Hill D J, Rosenberg L. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas.  J Endocrinol. 1999;  161 357-364
  • 7 Wang R N, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship.  J Endocrinol. 1999;  163 181-190
  • 8 Nagata N, Gu Y, Hori H, Balamurugan A N, Touma M, Kawakami Y, Wang W, Baba T T, Satake A, Nozawa M, Tabata Y, Inoue K. Evaluation of insulin secretion of isolated rat islets cultured in extracellular matrix.  Cell Transplant. 2001;  10 447-451
  • 9 Frisch S M, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis.  J Cell Biol. 1994;  124 619-626
  • 10 Thomas F T, Contreras J L, Bilbao G, Ricordi C, Curiel D, Thomas J M. Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation.  Surgery. 1999;  126 299-304
  • 11 Paraskevas S, Maysinger D, Wang R, Duguid W P, Rosenberg L. Cell loss in isolated human islets occurs by apoptosis.  Pancreas. 2000;  20 270-276
  • 12 Cattan P, Berney T, Schena S, Molano D, Pileggi A, Vizzardelli C, Ricordi C, Inverardi L. Early assessment of apoptosis in isolated islets of Langerhans.  Transplantation. 2001;  71 857-862
  • 13 Frisch S M, Rouslahti E. Integrins and anoikis.  Curr Opin Cell Biol. 1997;  9 701-706
  • 14 Thomas F, Wu J, Contreras J L, Smyth C, Bilbao G, He J, Thomas J. A tripartite anoikis-like mechanism causes early isolated islet apoptosis.  Surgery. 2001;  130 333-338
  • 15 Zhang Z, Vuori K, Reed J C, Rouslahti E. The α5β1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression.  Proc Natl Acad Sci. 1995;  92 6161-6165
  • 16 de la Fuente M T, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A. Fibronectin interaction with α4β1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax.  Leukemia. 1999;  13 266-274
  • 17 Anwar A RF, Moqbel R, Walsh G M, Kay A B, Wardlaw A J. Adhesion to fibronectin prolongs eosinophil survival.  J Exp Med. 1993;  177 839-843
  • 18 Wang R N, Paraskevas S, Rosenberg L. Characterization of integrin in islets isolated from Hamster, Canine, Porcine, and Human pancreas.  J Histochem Cytochem. 1999;  47 499-506
  • 19 Bosco D, Meda P, Halben P A, Rouiller D G. Importance of cell - matrix interactions in rat islet β-cell secretion in vitro. Role of α6β1 integrin.  Diabetes. 2000;  49 233-243
  • 20 Sutton R, Peters M, Mcshane P, Gray D WR, Morris P J. Isolation of rat pancreatic islets by ductal injection of collagenase.  Transplantation. 1986;  42 689-691
  • 21 Tsuura Y, Ishida H, Okamoto Y, Kato S, Horie M, Ikeda H, Seino Y. Reduced sensitivity of dihydroxyacetone on ATP-sensitive K+ channels of pancreatic beta-cells in GK rats.  Diabetologia. 1994;  37 1082-1087
  • 22 Fujimoto S, Tsuura Y, Ishida H, Tsuji K, Mukai E, Kajikawa M, Hamamoto Y, Takeda T, Yamada Y, Seino Y. Augmentation of basal insulin release from rat islets by preexposure to a high concentration of glucose.  Am J Physiol. 2000;  279 E927-940
  • 23 Hopcroft D W, Mason D R, Scott R S. Standardization of insulin secretion from pancreatic islets: Validation of a DNA assay.  Horm Metab Res. 1985;  17 559-561
  • 24 Kersgren O, Jansson L, Andersson A. Effects of hyperglycemia on function of isolated mouse pancreatic islets transplanted under kidney capsule.  Diabetes. 1989;  38 510-515
  • 25 Hamamoto Y, Tsuura Y, Fujimoto S, Nagata M, Takeda T, Mukai E, Fujita J, Yamada Y, Seino Y. Recovery of function and mass of endogenous β-cells in streptozotocin - induced diabetic rats treated with islet transplantation.  Biochem Biophys Res Commun. 2001;  287 104-109
  • 26 Ricordi C. Pancreatic islet cell transplantation; 1892 - 1992 One century of transplantation for diabetes. Austin; R. G. Landes Co 1992
  • 27 Shapiro A M, Hao E, Rajotte R V, Kneteman N M. High yield of rodent islets with intraductal collagenase and stationary digestion - a comparison with standard technique.  Cell Transplant. 1996;  6 631-638
  • 28 Ranuncoli A, Cautero N, Ricordi C, Masetti M, Malono R D, Inverardi L, Alejandro R, Kenyon N S. Islet cell transplantation: in vivo and in vitro functional assessment of nonhuman primate pancreatic islets.  Cell Transplant. 2000;  9 409-414
  • 29 Ricordi C, Lakey J RT, Hering B J. Challenges toward standardization of islet isolation technology.  Transplant Proc. 2001;  33 1709
  • 30 Pileggi A, Ricordi C, Alessiani M, Inverardi L. Factors influencing islet of Langerhans graft function and monitoring.  Clin Chim Acta. 2001;  310 3-16
  • 31 Munn S R, Kaufman D B, Field M J, Sutherland D E. Successful 24- and 48-hour cold storage of the pancreas prior to islet isolation and transplantation.  Transplant Proc. 1989;  21 2635-2637
  • 32 Hesse U J, Berrevoet P, Pattyn P, Vanholder R, de Hemptinne B. Donor parameters of pancreas grafts processed for islet or β-cell isolation and transplantation.  Transplant Proc. 1997;  29 2259
  • 33 Perfetti R, Henderson T E, Wang Y, Montrose-Rafizadeh C, Egan J M. Insulin release and insulin mRNA levels in rat islets of Langerhans cultured on extracellular matrix.  Pancreas. 1996;  13 47-54
  • 34 Bosco D, Gonelle-Gispert C, Wollheim C B, Halben P A, Rouiller D G. Increased intracellular calcium is required for spreading of rat islet β-cells on extracellular matrix.  Diabetes. 2001;  50 1039-1046
  • 35 Davalli A M, Scaglia L, Zangen D H, Hollister J, Bonnar-Weir S, Weir G C. Vulnerability of islets in the immediate posttransplantation period.  Diabetes. 1996;  19 1161-1167
  • 36 Menger M D, Yamauchi J, Vollmar B. Revascularization and microcirculation of freely grafted islets of Langerhans.  World J Surg. 2001;  25 509-515
  • 37 Ryan E A, Lakey J RT, Paty B W, Imes S, Korbutt G S, Kneteman N M, Bigam D, Rajotte R V, Shapiro A MJ. Successful islet transplantation. Continued insulin reserve provides long-term glycemic control.  Diabetes. 2002;  51 2148-2157
  • 38 Laybutt D R, Glandt M, Xu G, Ahn Y B, Trivedi N, Bonner-Weir S, Weir G C. Critical reduction in β-cell mass results in two distinct outcomes over time.  J Biol Chem. 2003;  278 2997-3005

Y. Hamamoto, M.D. PhD. 

One Joslin Place · Boston MA · 02215 · USA

Phone: +1(617)732-2581 ·

Fax: +1(617)732-2650

Email: yoshiyuki,hamamoto@joslin.harvard.edu