Subscribe to RSS
DOI: 10.1055/s-2003-42056
Intramolecular Aglycon Delivery (IAD): The Solution to 1,2-cis Stereocontrol for Oligosaccharide Synthesis?
Publication History
Publication Date:
08 October 2003 (online)

Abstract
Intramolecular glycosylation of a glycosyl acceptor temporarily tethered to the 2-hydroxyl group of the glycosyl donor, commonly referred to as Intramolecular Aglycon Delivery (IAD), potentially provides a solution to the perennial problem of how to synthesise 1,2-cis glycosidic linkages with complete stereocontrol. This account summarises developments in this area, focussing on the development within our group of intramolecular glycosylation based on allyl protecting groups (allyl IAD). Optimisation, the current scope and limitations, and further potential developments of allyl IAD are discussed herein.
-
1 Introduction
-
2 Intramolecular Aglycon Delivery (IAD): Previous Approaches
-
2.1 Synthesis of β-Mannosides
-
2.2 Synthesis of Other 1,2-cis Glycosides by IAD
-
3 NIS-mediated Hindsgaul IAD
-
4 Allyl IAD
-
4.1 Thioglycoside Donors
-
4.2 Glycosyl Fluoride Donors
-
4.3 Attempted Facile Synthesis of (1-4) Linked Disaccharides
-
4.4 Extension to Other Sugars and Protecting Group Patterns
-
4.5 Optimisation
-
4.6 Mechanistic Studies
-
4.7 Iterative Oligosaccharide Synthesis
-
5 Summary and Future Perspectives
Key words
carbohydrates - glycosylations - stereoselective - intramolecular aglycon delivery (IAD) - 1,2-cis-glycosides
-
1a
Varki A. Glycobiology 1993, 3: 97 -
1b
Dwek RA. Chem. Rev. 1996, 96: 683 - 2 For a series of articles outlining the potential of carbohydrates as therapeutic agents and also outlining recent advances in the fields of carbohydrate chemistry and glycobiology see: Science 2001, 291: 2338
- For some recent reviews of oligosaccharide synthesis see:
-
3a
Boons G.-J. Tetrahedron 1996, 52: 1095 -
3b
Davis BG. J. Chem. Soc., Perkin Trans. 1 2000, 2137 - 4 See:
Roth J. Chem. Rev. 2002, 102: 285 ; and references contained therein - 6
Wulff G.Röhle G. Angew. Chem., Int. Ed. Engl. 1974, 13: 157 - 7 For a recent review on 1,2-cis glycosylation focussing on intermolecular approaches see:
Demchenko AV. Curr. Org. Chem. 2003, 7: 35 - 8
Ogawa T.Nukada T.Kitajima T. Carbohydr. Res. 1983, 123: C12 -
9a
Lemieux RU.James K.Nagabhushan TL. Can. J. Chem. 1973, 51: 42 -
9b
Lemieux RU.Hendriks KB.Stick RV.James K. J. Am. Chem. Soc. 1975, 97: 4056 - 10 For a recent review on intramolecular glycosylation see:
Jung K.-H.Müller M.Schmidt RR. Chem. Rev. 2000, 100: 4423 -
11a
Barresi F.Hindsgaul O. J. Am. Chem. Soc. 1991, 113: 9377 -
11b
Barresi F.Hindsgaul O. Synlett 1992, 759 -
11c
Barresi F.Hindsgaul O. Can. J. Chem. 1994, 72: 1447 -
12a
Stork G.Kim G. J. Am. Chem. Soc. 1992, 114: 1087 -
12b
Stork G.La Clair JJ. J. Am. Chem. Soc. 1996, 118: 247 - 13
Tebbe FN.Parshall GW.Reddy GS. J. Am. Chem. Soc. 1978, 100: 3611 - 14
Ito Y.Ogawa T. Angew. Chem. Int. Ed. Engl. 1994, 33: 1765 - 15
Ito Y.Ohnishi Y.Ogawa T.Nakahara Y. Synlett 1998, 1102 -
16a
Dan A.Ito Y.Ogawa T. J. Org. Chem. 1995, 60: 4680 -
16b
Dan A.Ito Y.Ogawa T. Tetrahedron Lett. 1995, 36: 7487 -
17a
Lergenmüller M.Nukada T.Kuramochi K.Dan A.Ogawa T.Ito Y. Eur. J. Org. Chem. 1999, 1367 -
17b
Ito Y.Ando H.Wada M.Kawai T.Ohnishi Y.Nakahara Y. Tetrahedron 2001, 57: 4123 - 18
Ito Y.Ogawa T. J. Am. Chem. Soc. 1997, 119: 5562 -
19a
Bols M. J. Chem. Soc., Chem. Commun. 1992, 913 -
19b
Bols M. J. Chem. Soc., Chem. Commun. 1993, 791 -
19c
Bols M.Hansen HC. Chem. Lett. 1994, 1049 - 20
Packard GK.Rychnovsky SD. Org. Lett. 2001, 3: 3393 -
21a
Krog-Jensen C.Oscarson S. J. Org. Chem. 1996, 61: 4512 -
21b
Krog-Jensen C.Oscarson S. J. Org. Chem. 1998, 63: 1780 - 22
Gelin M.Ferrieres V.Lefeuvre M.Plusquellec D. Eur. J. Org. Chem. 2003, 1285 - 23
Ennis SC.Fairbanks AJ.Tennant-Eyles RJ.Yeates HS. Synlett 1999, 1387 - 24 The anomeric configurations of all mannosides synthesised throughout these studies were confirmed by measurement of the J
H-1,C-1 coupling constants which were in all cases less than 160 Hz, see:
Bock K.Pedersen C. J. Chem. Soc., Perkin Trans. 2 1974, 293 - 25
Ennis SC.Fairbanks AJ.Slinn CA.Tennant-Eyles RJ.Yeates HS. Tetrahedron 2001, 57: 4221 - 26
Boons G.-J.Isles S. J. Org. Chem. 1996, 61: 4262 - 27
Seward CMP.Cumpstey I.Aloui M.Ennis SC.Redgrave AJ.Fairbanks AJ. Chem. Commun. 2000, 1409 - 28
Cumpstey I.Fairbanks AJ.Redgrave AJ. Org. Lett. 2001, 3: 2371 - 29
Mukaiyama T.Murai Y.Shoda S. Chem. Lett. 1981, 431 - 30
Cumpstey I.Fairbanks AJ.Redgrave AJ. Monatsh. Chem. 2002, 133: 449 - 31
Cumpstey I. D. Phil. Thesis University of Oxford; UK: 2002. -
32a
Montchamp J.-L.Tian F.Hart ME.Frost JW. J. Org. Chem. 1996, 61: 3897 -
32b
Douglas NL.Ley SV.Osborn HMI.Owen DR.Priepke HWM.Warriner SL. Synlett 1996, 793 - 33
Aloui M.Chambers D.Cumpstey I.Fairbanks AJ.Redgrave AJ.Seward CMP. Chem.-Eur. J. 2002, 8: 2608 - 34
Seward CMP. D. Phil. Thesis University of Oxford; UK: 2002. - 35 See for example:
Scheffler G.Behrendt ME.Schmidt RR. Eur. J. Org. Chem. 2000, 3527 - 36
Ennis SC.Cumpstey I.Fairbanks AJ.Butters TD.Mackeen M.Wormald MR. Tetrahedron 2002, 58: 9403 - 39
Plante OJ.Palmacci ER.Seeberger PH. Science 2001, 291: 1523
References
Our main interest in accessing tetrasaccharide 1 was in order to determine its solution conformation by a series of NMR experiments in a variety of different solvents. However, as an offshoot of any synthesis we undertook we also desired access to a variety of truncated and fluorescence labeled sub-structures for use in enzyme assays amongst other purposes.
37Cumpstey, I.; Fairbanks, A. J. unpublished results.
38In fact both of these glycosylation reactions have only been performed on a single occasion on a small scale and so the reaction yields remain somewhat unoptimised.