Synlett 2003(14): 2225-2227  
DOI: 10.1055/s-2003-42070
LETTER
© Georg Thieme Verlag Stuttgart · New York

Efficient Preparation of 2-Substituted Pyridazino[4,3-h]psoralen Derivatives

José Carlos González-Gómez*, Eugenio Uriarte
Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
Fax: +34(981)594912; e-Mail: jcgg1971@yahoo.es;
Weitere Informationen

Publikationsverlauf

Received 6 August 2003
Publikationsdatum:
07. Oktober 2003 (online)

Abstract

An efficient synthesis of 2-chloro-6-methoxypyridazino[4,3-h]psoralen was achieved by Diels-Alder reaction of 3,6-dichloro-1,2,4,5-tetrazine and 8-methoxy-psoralen (8-MOP) in a one-pot procedure. The convenient transformation of this intermediate into the 2-triflate derivative allowed efficient palladium-catalyzed reduction, methoxycarbonylation , and Sonogashira cross-coupling reactions at C2.

    References

  • 1 Dall’Acqua F. Caffieri S. Photomed. Photobiol.  1988,  10:  1 
  • 2 Lowe NJ. Chizhevsky V. Gabriel H. Clin. Dermatol.  1997,  15:  745 
  • 3a Dalla Via L. Gia O. Magno SM. Santana L. Teijeira M. Uriarte E. J. Med. Chem.  1999,  42:  4405 
  • 3b Santana L. Uriarte E. Dalla Via L. Gia O. Bioorg. Med. Chem. Lett.  2000,  10:  135 
  • 4 Neidle S. Nucleic Acid Structure and Recognition   Oxford University Press; Oxford: 2002.  p.100 
  • 5 González JC. Dedola T. Santana L. Uriarte E. Begala M. Copez D. Podda G. J. Heterocycl. Chem.  2000,  37:  907 
  • 6 González-Gómez JC. Santana L. Uriarte E. Synthesis  2003,  27 
  • 7 González-Gómez JC. Santana L. Uriarte E. Synthesis  2002,  43 
  • 8 Boger DL. Sakya SM. J. Org. Chem.  1988,  53:  1415 ; supplementary material
  • 9a Schirmer U, Wuerzer B, Meyer N, Neugebauer FA, and Fisher H. inventors; Ger. Patent  35-08214-A1. For the preparation of tetrazine 2 see: ; Chem. Abstr. 1987, 106, 45718
  • 9b

    In our preparation the yield of tetrazine 2 was 68% (1.02 g) from 3,6-bisthiomethyltetrazine (1.74 g).

  • For examples of Diels-Alder reactions of tetrazine 2 see:
  • 10a Benson SC. Lee L. Yang L. Snyder JK. Tetrahedron  2000,  56:  1165 
  • 10b Sparey TJ. Harrison T. Tetrahedron Lett.  1998,  39:  5873 
  • 13 For a convenient route to psoralens not substituted at 4′ and 5′, see: Chimichi S. Boccalini M. Cosimelli B. Viola G. Vedaldi D. Dall’Acqua F. Tetrahedron  2002,  58:  4859 
  • For a simple procedure for the dehydrohalogenation of 3-chloropyridazine derivatives, see:
  • 14a Raviña E. Sotelo E. Synlett  2002,  223 
  • 14b Haider N. Sotelo E. Chem. Pharm. Bull.  2002,  50:  1479 
  • For examples of palladium-catalyzed deoxygenations of phenols through triflates see:
  • 15a Cacchi S. Ciattini PG. Morera E. Ortar G. Tetrahedron Lett.  1986,  27:  5541 
  • 15b Cacchi S. Morera E. Ortar G. Org. Synth.  1990,  68:  138 
  • 16 Dal Piaz V. Giovannoni MP. Ciciani G. Tetrahedron Lett.  1993,  34:  3903 
  • 17 Toussaint D. Suffert J. Wermuth CG. Heterocycles  1994,  38:  1273 
  • 18 Usually diphosphines, like dppp and dppf, are used in this reduction process to accelerate the last reductive elimination step. For an excellent review of transformations of aryl triflates, see: Ritter K. Synthesis  1993,  735 
  • For examples of the hydrolysis of aromatic triflates see:
  • 19a Edstrom ED. Yu T. J. Org. Chem.  1995,  60:  5382 
  • 19b Malapel-Andrieu B. Mérour J.-Y. Tetrahedron  1998,  54:  11079 
  • 19c Malapel-Andrieu B. Mérour J.-Y. Tetrahedron  1998,  54:  11110 
  • 20 Side aminoalkyl chains are commonly linked to the polycyclic skeleton of intercalant agents to improve its bioavailability and increase the affinity for DNA. For a recent review of intercalant agents see: Braña MR. Cacho M. Gradillas A. De Pascual-Teresa B. Ramos A. Curr. Pharm. Design  2001,  8:  1405 
  • Mitsunobu reactions of phenols have been used on a number of occasions to prepare ethers from phenols. See:
  • 21a Mitsunobu O. Synthesis  1981,  1 
  • 21b Hughes DL. Org. React.  1992,  42:  335 
  • 21c Valentine DH. Hillhouse JH. Synthesis  2003,  317 
  • 21d Yoakim C. Guse I. O’Meara JA. Thavonekham B. Synlett  2003,  473 
  • For MgCl2-mediated amidations see:
  • 22a Guo Zh. Dowdy ED. Li W.-S. Polniaszek R. Delaney E. Tetrahedron Lett.  2001,  42:  1843 
  • 22b González-Gómez JC. Uriarte E. Synlett  2002,  2095 
  • For recent examples, see:
  • 23a Bu X. Chem J. Deady LW. Denny WA. Tetrahedron  2002,  58:  175 
  • 23b Wakelin LPG. Adams A. Denny WA. J. Med. Chem.  2002,  45:  894 
  • 24a Rohr M. Toussaint D. Chayer S. Mann A. Suffert J. Wermuth C.-G. Heterocycles  1996,  43:  1459 
  • 24b Dolle RE. Schmidt SJ. Kruse LI. J. Chem. Soc., Chem. Commun.  1987,  904 
  • 25 Rohr M. Toussaint D. Chayer S. Mann A. Suffert J. Wermuth C.-G. Heterocycles  1996,  43:  1459 
  • 26a Gathergood N. Scammells PJ. Org. Lett.  2003,  5:  921 
  • 26b Nomak R. Snyder JK. Tetrahedron Lett.  2001,  42:  7929 
  • 27 Hilt G. Korn TJ. Smolko KI. Synlett  2003,  241 
11

The Hünig base was also added before heating the reaction mixture, but decomposition of tetrazine 2 and formation of a black tar was observed. Compound 4: mp 323-324 ºC. 1H NMR (300 MHz, DMSO-d 6 ): δ = 8.79 (s, 1 H, H1), 8.35 (s, 1 H, H11), 8.26 (d, J = 9.70 Hz, 1 H, H10), 6.60 (d, J = 9.70 Hz, 1 H, H9), 4.27 (s, 3 H, OMe). HRMS: m/z calcd for C14H8N2O4Cl (M + 1): 305.0143 (37Cl)/303.0173 (35Cl). Found: 305.0153/303.0180.

12

Aldrich: 5-Methoxypsoralen, 99% (27,572-7, 1 g, $201).

28

Compounds 5, 6, 7, 8, 9 and 10 gave satisfactory analytical and spectroscopic data.