RSS-Feed abonnieren
DOI: 10.1055/s-2003-42073
Copper-Assisted Arylation of 1-Thiosugars: Efficient Route to Triazene Substituted Arylthioglycosides
Publikationsverlauf
Publikationsdatum:
07. Oktober 2003 (online)
Abstract
Efficient copper mediated arylation of sugar thiols by o-haloaryl triazenes under mild conditions is described. The developed method allows the preparation of symmetrical and unsymmetrical 1,3-bis(glycopyranosylthio)benzene derivatives.
Key words
arylations - copper - sugar thiols - thioglycosides - triazenes
-
1a
Horton D.Wander JD. In The Carbohydrates. Chemistry and Biochemistry Vol. IB:Pigman W.Horton D. Academic Press; New York: 1980. p.799-842 -
1b
Driguez H. Top. Curr. Chem. 1997, 187: 85 - 2
Choi JH.Choe YS.Lee KH.Choi Y.Kim SE.Kim BT. Carbohydr. Res. 2003, 338: 29 -
3a
Seevers RH.Counsell RE. Chem. Rev. 1982, 82: 575 -
3b
Wilbur DS. Bioconjugate Chem. 1992, 3: 433 - 4 Electrophilic iodonium species are utilized for activation of thioglycosides in glycosylations and may cause their anomerization, see:
Boons G.-J.Stauch T. Synlett 1996, 906 - 5
Kimball DB.Haley MM. Angew. Chem. Int. Ed. 2002, 41: 3338 -
6a
Foster NI.Heindel ND.Burns HD.Muhr W. Synthesis 1980, 572 -
6b
Satyamurthy N.Barrio JR. J. Org. Chem. 1983, 48: 4394 -
6c
Satyamurthy N.Barrio JR.Schmidt DG.Kammerer C.Bida GT.Phelps ME. J. Org. Chem. 1990, 55: 4560 -
6d
Barbero M.Degani I.Diulgheroff N.Dughera S.Fochi R. Synthesis 2001, 2180 ; and references therein -
7a
Čern M.Vrkoč J.Staněk J. Collect. Czech. Chem. Commun. 1959, 24: 64 -
7b
Frgala J.Čern M.Staněk J. Collect. Czech. Chem. Commun. 1975, 40: 1411 -
7c Č
ern M.Staněk J.Pacák J. Monatsh. Chem. 1963, 94: 290 -
7d
Čern M.Trnka T.Buděínsk M. Collect. Czech. Chem. Commun. 1996, 61: 1489 -
7e
Knapp S.Myers DS. J. Org. Chem. 2001, 66: 3636 -
7f
Knapp S.Myers DS. J. Org. Chem. 2002, 67: 2995 -
8a
Driguez H.Szeja W. Synthesis 1994, 1413 -
8b
Ibatullin FM.Selivanov SI.Shavva AG. Synthesis 2001, 419 -
9a
Lindley J. Tetrahedron 1984, 40: 1433 -
9b
Kondo T.Mitsudo T. Chem. Rev. 2000, 100: 3205 -
9c
Bates CG.Gujadhur RK.Venkataraman D. Org. Lett. 2002, 4: 2803 -
9d
Kwong FY.Buchwald SL. Org. Lett. 2002, 4: 3517 ; and references therein - 10 One example of the Cu(OAc)2 mediated reaction of per-O-acetylated 1-thio-β-d-glucose with phenylboronic acid in refluxing DMF was reported:
Herradura PS.Pendola KA.Guy RK. Org. Lett. 2000, 2: 2019 -
11a
Nicolaou KC.Boddy CNC.Natarajan S.Yue T.-Y.Li H.Bräse S.Ramanjulu JM. J. Am. Chem. Soc. 1997, 119: 3421 -
11b
Nicolaou KC.Boddy CNC. J. Am. Chem. Soc. 2002, 124: 10451 - 13 This compound was prepared by iodination of 4-aminobenzophenone with BTMA·ICl2, followed by diazotization of the resulting 4-amino-3-iodobenzophenone and subsequent quenching of the diazonium salt with pyrrolidine. For the iodination protocol, see:
Kajigaeshi S.Kakinami T.Yamasaki H.Fujisaki S.Okamoto T. Bull. Chem. Soc. Jpn. 1988, 61: 600 -
14a
Dormán G.Prestwich GD. Biochemistry 1994, 33: 5661 -
14b
Fleming SA. Tetrahedron 1995, 51: 12479 -
15a
Klapars A.Antilla JC.Huang X.Buchwald SL. J. Am. Chem. Soc. 2001, 123: 7727 -
15b
Klapars A.Huang X.Buchwald SL. J. Am. Chem. Soc. 2002, 124: 7421 - 16
Ciattini PG.Morera E.Ortar G. Tetrahedron Lett. 1995, 36: 4133 - Multivalent carbohydrate ligands, see:
-
17a
Mammen M.Choi S.-K.Whitesides GM. Angew. Chem. Int. Ed. 1998, 37: 2754 -
17b
Kitov PI.Sadowska JM.Mulvey G.Armstrong GD.Ling H.Pannu NS.Read RJ.Bundle DR. Nature (London) 2000, 403: 669 -
17c
Fan E.Zhang Y.Minke WE.Hou Z.Verlinde CLMJ.Hol WGJ. J. Am. Chem. Soc. 2000, 122: 2663
References
General Experimental Procedure for the Preparation of 3: A degassed mixture of aryliodide 2 (1 mmol, 1 equiv), sugar thiol 1 (1.1 equiv), CuI (1 equiv), K2CO3 (2 equiv), and pyridine (3 equiv) was stirred in MeCN (5 mL) at 80 ºC for 24 h under Ar. After cooling, a solution of KCN (3 equiv) in water (40 mL) was added and the mixture was extracted with EtOAc (2 × 20 mL). Combined organic extracts were washed with brine, water, dried over MgSO4 and removal of the solvent under reduced pressure followed by column chromatography on silica gel [CH2Cl2-(0-10%) EtOAc] afforded product 3.
3a: White solid; mp 120-121 ºC. 1H NMR (400 MHz, CDCl3): δ = 2.00-2.06 (br s, 4 H), 2.01 (s, 6 H), 2.03 (s, 3 H), 2.05 (s, 3 H), 3.55-3.82 (br s, 2 H), 3.78 (ddd, J = 10.0, 5.7, 2.4 Hz, 1 H), 3.82-4.02 (br s, 2 H), 4.12 (dd, J = 12.2, 2.4 Hz, 1 H), 4.22 (dd, J = 12.2, 5.7 Hz, 1 H), 5.04 (d, J = 10.1 Hz, 1 H), 5.10 (dd, J = 10.1, 9.3 Hz, 1 H), 5.16 (dd, J = 10.0, 9.3 Hz, 1 H), 5.26 (t, J = 9.3 Hz, 1 H), 7.07 (td, J = 7.6, 1.2 Hz, 1 H), 7.19 (td, J = 7.6, 1.2 Hz, 1 H), 7.38 (dd, J = 7.6, 1.2 Hz, 1 H), 7.40 (dd, J = 7.6, 1.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.55, 20.60, 20.66, 20.70, 23.71 (2 C), 46.92, 51.00, 62.32, 68.50, 70.26, 74.13, 75.57, 83.85, 117.05, 125.47, 127.48, 128.12, 129.48, 149.39, 169.25, 169.38, 170.20, 170.56. ESI-MS: m/z = 560 [M + Na]. Rf 0.22 (hexane-EtOAc, 2:1). Anal. Calcd for C24H31N3O9S: C, 53.62; H, 5.81; N, 7.82; S, 5.96. Found: C, 53.40; H, 5.89; N, 7.77; S, 5.88.
3e: Yellow solid; mp 173-174 ºC (MeOH). 1H NMR (400 MHz, CDCl3): δ = 1.94 (s, 3 H), 2.00 (s, 3 H), 2.02-2.13 (br s, 4 H), 2.04 (s, 3 H), 2.14 (s, 3 H), 3.6-3.8 (br s, 2 H), 3.9-4.04 (m, 4 H), 4.06-4.14 (m, 1 H), 5.08 (d, J = 10.0 Hz, 1 H), 5.10 (dd, J = 10.0, 3.4 Hz, 1 H), 5.39 (t, J = 10.0 Hz, 1 H), 5.45 (dd, J = 3.4, 0.9 Hz, 1 H), 7.45-7.52 (m, 3 H), 7.55-7.60 (m, 1 H), 7.64 (dd, J = 8.4, 1.6 Hz, 1 H), 7.75-7.80 (m, 2 H), 7.92 (d, J = 2.0 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.49, 20.55, 20.61, 20.78, 23.41, 23.94, 47.22, 51.32, 61.40, 67.18, 67.27, 72.01, 74.31, 83.74, 115.91, 128.18 (2 C), 129.31, 129.35, 129.68 (2 C), 130.52, 132.06, 133.98, 138.03, 151.87, 169.40, 169.99, 170.22, 170.31, 195.30. ESI-MS: m/z = 664 [M + Na]. Rf 0.62 (CH2Cl2-EtOAc, 7:3). Anal. Calcd for C31H35N3O10S: C, 58.02; H, 5.50; N, 6.55; S, 5.00. Found: C, 58.21; H, 5.62; N, 6.54; S, 5.01.
The reactions were carried out according to the general procedure for preparation of 3 with a two-fold excess of reactants with respect to diiodotriazene 4.5a: White solid; mp 155-156 ºC (MeOH). 1H NMR (400 MHz, CDCl3): δ = 1.97 (s, 6 H), 2.00 (s, 6 H), 2.02-2.08 (br s, 4 H), 2.03 (s, 6 H), 2.08 (s, 6 H), 2.34 (s, 3 H), 3.52-3.79 (br s, 2 H), 3.79 (ddd, J = 10.0, 5.6, 2.3 Hz, 2 H), 3.82-4.02 (br s, 2 H), 4.14 (dd, J = 12.2, 2.3 Hz, 2 H), 4.24 (dd, J = 12.2, 5.6 Hz, 2 H), 4.80 (d, J = 10.1 Hz, 2 H), 5.05 (dd, J = 10.1, 9.3 Hz, 2 H), 5.08 (dd, J = 10.0, 9.3 Hz, 2 H), 5.23 (t, J = 9.3 Hz, 2 H), 7.23 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.53 (2 C), 20.56 (2 C), 20.64 (2 C), 20.69 (2 C), 21.35, 23.80 (2 C), 46.74, 50.94, 62.42 (2 C), 68.41 (2 C), 69.96 (2 C), 73.93 (2 C), 75.62 (2 C), 85.47 (2 C), 127.50 (2 C), 129.21 (2 C), 134.58, 146.88, 169.09 (2 C), 169.35 (2 C), 170.11 (2 C), 170.53 (2 C). ESI-MS: m/z = 936 [M + Na]. Rf 0.60 (CH2Cl2-EtOAc, 7:3). Anal. Calcd for C39H51N3O18S2: C, 51.25; H, 5.62; N, 4.60; S, 7.02. Found: C, 51.36; H, 5.76; N, 4.53; S, 6.91.
19Preparation of 7. The reactions of 1a with 4a to get 6 and the reaction of 6 with 1c to obtain 7 were carried out under the same conditions as for 3.
6: White solid; mp 171-172 ºC (MeOH). 1H NMR (400 MHz, CDCl3): δ = 1.96 (s, 3 H), 1.99 (s, 3 H), 2.01-2.11 (br s, 4 H), 2.03 (s, 3 H), 2.09 (s, 3 H), 2.29 (s, 3 H), 3.58-3.82 (br s, 2 H), 3.79 (ddd, J = 10.1, 5.7, 2.4 Hz, 1 H), 3.82-4.02 (br s, 2 H), 4.16 (dd, J = 12.3, 2.4 Hz, 1 H), 4.25 (dd, J = 12.3, 5.7 Hz, 1 H), 4.69 (d, J = 10.2 Hz, 1 H), 5.01 (dd, J = 10.2, 9.3 Hz, 1 H), 5.07 (dd, J = 10.1, 9.3 Hz, 1 H), 5.21 (t, J = 9.3 Hz, 1 H), 7.37 (dd, J = 1.8, 0.8 Hz, 1 H), 7.60 (dd, J = 1.8, 0.8 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 20.47, 20.54 (2 C), 20.61, 20.70, 23.85 (2 C), 46.94, 50.98, 62.49, 68.38, 69.90, 73.78, 75.65, 86.78, 94.35, 126.64, 131.10, 136.06, 138.43, 148.09, 169.09, 169.34, 170.05, 170.53. ESI-MS:
m/z = 700 [M + Na]. Rf 0.24 (hexane-EtOAc, 2:1). Anal. Calcd for C25H32IN3O9S: C, 44.32; H, 4.76; N, 6.20; S, 4.73. Found: C, 44.61; H, 4.86; N, 6.21; S, 4.71.
7: White solid; mp 190-191 ºC (MeOH, dec.). 1H NMR (400 MHz, CDCl3): δ = 1.87 (s, 3 H), 1.97 (s, 3 H), 2.00-2.06 (br s, 4 H), 2.00 (s, 3 H), 2.02 (s, 3 H), 2.028 (s, 3 H), 2.03 (s, 3 H), 2.08 (s, 3 H), 2.09 (s, 3 H), 2.33 (s, 3 H), 3.40-4.00 (br, 4 H), 3.76-3.84 (m, 2 H), 4.10 (td, J = 10.4, 9.3 Hz, 1 H), 4.14 (dd, J = 12.3, 2.4 Hz, 1 H), 4.15 (dd, J = 12.4, 2.4 Hz, 1 H), 4.24 (dd, J = 12.3, 5.7 Hz, 1 H), 4.25 (dd, J = 12.4, 5.5 Hz, 1 H), 4.78 (d, J = 10.2 Hz, 1 H), 4.86 (d, J = 10.5 Hz, 1 H), 5.02 (dd, J = 10.2, 9.3 Hz, 1 H), 5.08 (app t, J = 9.6 Hz, 2 H), 5.22 (dd, J = 10.2, 9.4 Hz, 1 H), 5.23 (t, J = 9.3 Hz, 1 H), 5.63 (d, J = 9.3 Hz, 1 H), 7.22 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 20.52, 20.55 (2 C), 20.63, 20.67, 20.69, 20.71, 21.36, 23.20, 23.76 (2 C), 46.94, 51.13, 53.17, 62.39, 62.63, 68.33, 68.46, 69.93, 73.80, 73.93, 75.62, 75.67, 85.52, 86.04, 127.14, 128.30, 128.76, 129.11, 134.56, 146.83, 169.12, 169.29, 169.37, 169.73, 170.08, 170.53, 170.58, 170.88. ESI-MS: m/z = 935 [M + Na]. Rf 0.25 (CH2Cl2-EtOAc, 7:3). Anal. Calcd for C39H52N4O17S2: C, 51.31; H, 5.74; N, 6.14; S, 7.02. Found: C, 51.16; H, 5.93; N, 6.00; S, 7.06.
8: Colorless amorphous glassy solid; mp 72-73 ºC.
1H NMR (400 MHz, CDCl3): δ = 1.96 (s, 3 H), 1.99 (s, 3 H), 2.13 (s, 6 H), 3.90-3.99 (m, 2 H), 4.06-4.13 (m, 1 H), 4.82 (d, J = 10.1 Hz, 1 H), 5.10 (dd, J = 10.0, 3.4 Hz, 1 H), 5.35 (t, J = 10.0 Hz, 1 H), 5.44 (dd, J = 3.4, 1.0 Hz, 1 H), 7.34 (dd, J = 8.4, 2 Hz, 1 H), 7.48-7.54 (m, 2 H), 7.59-7.63 (m, 1 H), 7.76-7.81 (m, 2 H), 7.98 (d, J = 8.4 Hz, 1 H), 8.04 (d, J = 2.4 Hz, 1 H). ESI-MS: m/z = 693 [M + Na]. Rf 0.22 (hexane-EtOAc, 2:1).