References
1a
Li C.-J.
Chem. Rev.
1993,
93:
2023
1b
Chan TH.
Li C.-J.
Can. J. Chem.
1994,
72:
1181
1c
Lubineau A.
Augé J.
Queneau Y.
Synthesis
1994,
741
1d
Li C.-J.
Chan TH.
Organic Reactions in Aqueous Media
Wiley;
New York:
1997.
1e
Organic Synthesis in Water
Grieco PA.
Blacky Academic and Professional;
London:
1998.
1f
Lubineau A.
Augé J.
Topics in Current Chemistry, In Modern Solvents in Organic Synthesis
Vol. 206:
Knochel P.
Springer-Verlag;
Berlin, Heidelberg:
1999.
p.1
2
Ribe S.
Wipf P.
Chem. Commun.
2001,
299
3
Ludwig R.
Angew. Chem. Int. Ed.
2001,
40:
1808
4
Keller E.
Feringa BL.
Synlett
1997,
842
5
Mori Y.
Kakumoto K.
Manabe K.
Kobayashi S.
Tetrahedron Lett.
2000,
41:
3107
6
Shibatomi K.
Nakahashi T.
Uozomi Y.
Synlett
2000,
1643
7
Bensa D.
Brunel J.-M.
Buono G.
Rodriguez J.
Synlett
2001,
715
8
Fischer RH.
Witz HM.
Synthesis
1980,
261
9 For a review, see: Ballini R.
Synlett
1999,
1009
10a
Rosini G.
Ballini R.
Marotta E.
Tetrahedron
1989,
45:
5935
10b
Ballini R.
Petrini M.
Rosini G.
Tetrahedron
1990,
46:
7531
11
Ballini R.
Bosica G.
Marcantoni E.
Vita P.
Bartoli G.
J. Org. Chem.
2000,
65:
5845
12
Barrett AGM.
Spilling CD.
Tetrahedron Lett.
1988,
29:
5733
13a
Bergman ED.
Ginsburg D.
Pappo R.
Org. React.
1959,
10:
1795
13b
Jung ME.
Semmelhack MF.
Comprehensive Organic Synthesis
Vol. 4:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
p.1-67
14a
Ballini R.
Papa F.
Abate C.
Eur. J. Org. Chem.
1999,
87
14b
Ballini R.
Barboni L.
Bosica G.
J. Org. Chem.
2000,
65:
6261
14c
Ballini R.
Barboni L.
Bosica G.
Filippone P.
Peretti S.
Tetrahedron
2000,
56:
4095
15a
Cookson RC.
Ray PS.
Tetrahedron Lett.
1982,
23:
3521
15b
Yurdakul A.
Gurtner C.
Jung E.-S.
Lorenzi-Riatsch A.
Linden A.
Guggisberg A.
Bienz S.
Hesse M.
Helv. Chim. Acta
1998,
81:
1373
15c
Ballini R.
Barboni L.
Bosica L.
Fiorini D.
Synthesis
2002,
2725
16a
Rosini G.
Ballini R.
Marotta E.
Tetrahedron
1989,
45:
5935
16b
Ballini R.
Petrini M.
Rosini G.
Tetrahedron
1990,
46:
7531
17
Rosini G.
Marotta E.
Synthesis
1986,
237
18 These starting materials were prepared in two steps, by transformation of commercially available cycloalkanones into the enol acetates and subsequent treatment of the latter compounds with acetyl nitrate.
Representative Procedure: To a solution of cyclo-heptanone (10 g, 90 mmol) in isopropenyl acetate (85 mL) was added p-toluenesulfonic acid (2.9 g, 15 mmol). The reacting mixture was refluxed for 24 h in an oil bath at 100 °C, and then it was cooled and diluted with Et2O
(20 mL). The solution was washed with sat. aq NaHCO3 (2 × 30 mL) and brine (2 × 30 mL). The organic layer was dried (Na2SO4) and evaporated, yielding 1-cycloheptenyl acetate (14.08 g, 100%), as a dark brown oil. To a solution of this compound in CH2Cl2 (30 mL) at 0 °C was successively added acetic anhydride (28.26 mL, 30.55 g, 295.7 mmol) and 96% sulfuric acid (0.5 mL). A mixture of glacial acetic acid (2.25 mL, 2.39 g, 40.8 mmol) and 65% nitric acid (6.75 mL) was then added dropwise. After stirring for an additional time of 3 h, the reacting mixture was diluted with CH2Cl2 (30 mL) and washed with brine (2 × 20 mL), and sat. aq NaHCO3 (3 × 20 mL, until no effervescence was observed). The organic layer was dried (Na2SO4) and evaporated and the residue was chromato-graphed on silica gel, eluting with 10:1 petroleum ether-ethyl acetate, yielding 7.482 g (54%) of compound 2a, as a pale yellow viscous oil. IR (NaCl): 1721 (C=O), 1158 and 1375 (NO2) cm-1. 1H NMR (250 MHz, CDCl3): δ = 5.34 (dd, 1 H, J = 9.5 and 3.9 Hz, H-2), 2.80-2.50 (m, 2 H, H-7), 2.40-2.20 (m,
1 H, H-3), 2.20-2.00 (m, 2 H, H-5,3), 2.00-1.75 (m, 2 H,
H-6,4), 1.75-1.50 (m, 2 H, H-6,4), 1.50-1.25 (m, 1 H, H-5). 13C NMR (63 MHz, CDCl3): δ = 201.7 (C-1), 94.1 (C-2), 41.7 (C-7), 29.1 (C-5), 29.0 (C-3), 26.6 (C-4), 24.2 (C-6). Anal. Calcd. for C7H11NO3 (M = 157): C, 53.50; H, 7.00; N, 8.92. Found: C, 53.37; H, 7.06; N, 8.85.
19 For a review of MDR inhibitors, see: Avendaño C.
Menéndez JC.
Curr. Med. Chem.
2002,
9:
159
20a
Smith CD.
Zilfou JT.
Stratmann K.
Patterson GML.
Moore RE.
Mol. Pharmacol.
1995,
47:
241
20b
Stratmann K.
Moore RE.
Bonjouklian R.
Deeter JB.
Patterson GML.
Shaffer S.
Smith CD.
Smitka TA.
J. Am. Chem. Soc.
1994,
116:
9935
20c
Zhang X.
Smith CD.
Mol. Pharmacol.
1996,
49:
288
21a
Bassetti M.
Cerichelli G.
Floris B.
Gazz. Chim. Ital.
1991,
121:
527
21b The rationalization given in this reference for the formation of 4 differs from the one proposed in Scheme
[1]
.
22 For a similar effect with 1,3-diones, see: Crispin DJ.
Vanstone AE.
Whitehurst JS.
J. Chem. Soc. C
1970,
10
23
Representative Procedure: To a vigorously stirred dispersion of α-nitrocycloheptanone 2a (150 mg, 0.96 mmol) in H2O (5 mL) was added acrolein (2.4 mmol, 2.5 equiv). The mixture was stirred at r.t. for 8 h, and the aqueous phase was then extracted with Et2O (3 × 10 mL), which was dried (Na2SO4) and evaporated, yielding 172 mg (85%) of 3-(1′-nitro-2′-oxocycloheptyl)-propanal (3a), as a pale yellow, viscous liquid. IR (NaCl): 1721 (C=O), 1542 and 1347 (NO2) cm-1. 1H NMR (250 MHz, CDCl3): δ = 9.77 (s, 1 H, CHO), 2.80-1.40 (m, 14 H). 13C NMR (63 MHz, CDCl3): δ = 202.5 (C-2′), 199.7 (C-1), 98.4 (C-1′), 41.2 (C-3′), 38.3 (C-2), 35.1 (C-5′), 29.3 (C-7′), 28.6 (C-6′), 25.5 (C-4′), 24.4 (C-2). Anal. Calcd for C10H15NO4: C, 56.33; H, 7.09; N, 6.57. Found: C, 56.59; H, 7.29; N, 6.49.
24a
Ballini R.
Bosica G.
Tetrahedron Lett.
1996,
44:
8027
24b
Ballini R.
Bosica G.
Eur. J. Org. Chem.
1998,
355
25
Ballini R.
Bosica G.
J. Org. Chem.
1997,
62:
425
26 For a similar effect of K2CO3 in the Michael reactions of 1,3-diones, see ref.
[21]