Subscribe to RSS
DOI: 10.1055/s-2003-42108
Diastereoselective Ruthenium-Catalyzed [2+2] Cycloadditions between Bicyclic Alkenes and a Chiral Propargylic Alcohol and its Derivatives
Publication History
Publication Date:
29 October 2003 (online)
Abstract
Diastereoselective ruthenium-catalyzed [2+2] cycloadditions of symmetrical bicyclic alkenes and a chiral propargylic alcohol or its derivatives were investigated. The cycloadditions were found to be highly chemo- and stereoselective giving anti-exo-cycloadducts in moderate to good yields. Diastereoselectivities of 58:42 to 84:16 were observed with chiral propargylic alcohol 2f and its derivatives 2a-g.
Key words
ruthenium - [2+2] cycloaddition - diastereoselectivity - alkene - alkyne
-
1a
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. Chap. 1-9. -
1b
Advances in Cycloaddition
Vol. 1-6:
JAI Press;
Greenwich:
1988-1999.
- For reviews on transition metal-catalyzed cycloadditions, see:
-
2a
Lautens M.Klute W.Tam W. Chem. Rev. 1996, 96: 49 -
2b
Hegedus LS. Coord. Chem. Rev. 1997, 161: 129 - For representative examples of transition metal-catalyzed cycloadditions, see:
-
3a For [4+2] cycloadditions:
Jolly RS.Luedtke G.Sheehan D.Livinghouse T. J. Am. Chem. Soc. 1990, 112: 4965 -
3b
McKinstry L.Livinghouse T. Tetrahedron 1994, 50: 6145 -
3c See also:
Wender PA.Jenkins TE.Suzuki S. J. Am. Chem. Soc. 1995, 117: 1843 -
3d
Wender PA.Smith TE. Tetrahedron 1998, 54: 1255 -
3e For [5+2] cycloadditions:
Wender PA.Takahashi H.Witulski B. J. Am. Chem. Soc. 1995, 117: 4720 -
3f
Wender PA.Fuji M.Husfeld CO.Love JA. Org. Lett. 1999, 1: 137 -
3g
Trost BM.Shen HC. Org. Lett. 2000, 2: 2523 -
3h
Wender PA.Barzilay CM.Dyckman AJ. J. Am. Chem. Soc. 2001, 123: 179 -
3i For [4+4] cycloadditions:
Wender PA.Ihle NC. J. Am. Chem. Soc. 1986, 108: 4678 -
3j For [6+2] cycloadditions:
Wender PA.Correa AG.Sato Y.Sun R. J. Am. Chem. Soc. 2000, 122: 7815 - 4
Comprehensive Organic Synthesis
Vol. 5:
Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. Chap. 2. - 5
The Conservation of Orbital Symmetry
Woodward R. B., Hoffmann R., Academic Press;
New York:
1970.
- 6
Crimmins MT. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. p.123 - 7
Baldwin JE. In Comprehensive Organic Synthesis Vol. 5:Trost BM.Fleming I.Paquette LA. Pergamon; Oxford: 1991. p.63 -
8a
Narasaka K.Hayashi Y.Iwasawa N.Sakurai H. Chem. Lett. 1989, 1581 -
8b
Engler TA.Letavic MA.Reddy JP. J. Am. Chem. Soc. 1991, 113: 5068 -
8c
Mitani M.Sudoh T.Koyama K. Bull. Chem. Soc. Jpn. 1995, 68: 1683 -
8d
Knolker HJ.Baum E.Schmitt O. Tetrahedron Lett. 1998, 39: 7705 -
9a
Mitsudo T.Kokuryo K.Shinsugi T.Nakagawa Y.Watanabe Y.Takegami Y. J. Org. Chem. 1979, 44: 4492 -
9b
Mitsudo T.Naruse H.Hori Y.Watanabe Y. J. Organomet. Chem. 1987, 334: 157 -
9c
Trost BM.Yanai M.Hoogsteen K. J. Am. Chem. Soc. 1993, 115: 5294 -
9d
Mitsudo T.Naruse H.Kondo T.Ozaki Y.Watanabe Y. Angew. Chem., Int. Ed. Engl. 1994, 33: 580 -
9e
Yi CS.Lee DW.Chen Y. Organometallics 1999, 18: 2043 -
9f
Huang D.-J.Rayabarapu DK.Li L.-P.Sambaiah T.Cheng C.-H. Chem.-Eur. J. 2000, 6: 3706 -
9g
Jordan RW.Tam W. Org. Lett. 2000, 2: 3031 -
9h
Jordan RW.Tam W. Org. Lett. 2001, 3: 2367 -
9i
Chao KC.Rayabarapu DK.Wang CC.Cheng CH. J. Org. Chem. 2001, 66: 8804 -
9j
Jordan RW.Tam W. Tetrahedron Lett. 2002, 43: 6051 -
9k
Shen Q.Hammond GB. J. Am. Chem. Soc. 2002, 124: 6534 - For recent reviews on asymmetric [2+2+1] cycloaddition, see:
-
10a
Ingate ST.Marco-Contellas J. Org. Prep. Proc. Int. 1998, 30: 121 -
10b
Buchwald SL.Hicks FA. In Comprehensive Asymmetric Catalysis Vol. 2:Jacobsen EN.Pfaltz A.Yamamoto H. Springer; Berlin: 1999. p.491-510 -
11a
Lautens M.Tam W.Lautens JC.Edwards LE.Crudden CM.Smith AC. J. Am. Chem. Soc. 1995, 117: 6863 -
11b
Lautens M.Tam W. In Advances in Metal-Organic Chemistry Vol. 6:Liebeskind LS. JAI Press; Greenwich: 1998. p.49-101 - 12
Lautens M.Tam W.Sood C. J. Org. Chem. 1993, 58: 4513 - 13 For an example on a diastereoselective metal catalyzed [2+2] cycloaddition between two alkenes, see:
Baik TG.Luis L.Wang LC.Krische MJ. J. Am. Chem. Soc. 2002, 124: 6534 - 14
Chetcuti MJ.McDonal SR. Organometallics 2002, 21: 3162 ; and references cited therein - 15 For an example, see:
Lautens M.Crudden CM. Organometallics 1989, 8: 2733 ; see also ref. 11a - For the synthesis of NBD 8a and 8b, see:
-
17a
Tranmer GK.Yip C.Handerson S.Jordan RW.Tam W. Can. J. Chem. 2000, 78: 527 -
17b
Michieletto I.Fabris F.De Lucchi O. Tetrahedron: Asymmetry 2000, 11: 2835 - For the synthesis of NBD 8c and 8d, see:
-
18a
Story PR. J. Org. Chem. 1961, 26: 287 -
18b
Story PR.Fahrenholtz SR. Org. Synth., Coll. Vol. V Wiley and Sons; New York: 1973. p.151
References
Representative Experimental:
(i) Ru-catalyzed [2+2] cycloadditions between 5 and 2f (Table
[2]
, entry 10): A mixture of norbornadiene 5 (164 µL, 1.52 mmol), alkyne 2f (71.8 mg, 0.51 mmol), and THF (0.3 mL) in an oven-dried vial was added via a cannula to an oven-dried screw-cap vial containing Cp*RuCl(COD) (weighed out from a dry box, 11.6 mg, 0.0305 mmol) under nitrogen. The oven-dried vial was rinsed with THF (0.3 mL). The reaction mixture was stirred in the dark at 25 ºC for 72 h. The crude product was purified by column chromato-graphy (EtOAc:hexanes = 1:9) to give an inseparable mixture of diastereoisomers 6f and 7f (107.5 mg, 0.459 mmol, 90%, 6f:7f (dr) = 82:18 measured by 1H NMR and GC) as a colorless oil. Rf = 0.42 (EtOAc:hexanes = 1:4); GC (HP-1 column): retention time for major isomer = 17.23 min, retention time for minor isomer = 17.35 min. IR (CH2Cl2): 3428 (br s), 3067 (w), 2983 (m), 1722 (s), 1675 (m), 1370 (m), 267 (s) cm-1. 1H NMR (400 MHz, CDCl3):
δ = 6.17 (dd, 1 H, J = 5.1, 3.0 Hz), 6.11 (dd, 1 H, J = 5.5, 2.9 Hz), 5.16 (br s, 0.18 H), 5.09 (br s, 0.82 H), 4.58 (q, 1 H, J = 6.8 Hz), 4.22 (q, 2 H, J = 7.1 Hz), 2.63 (br s, 1 H), 2.59 (br s, 0.18 H), 2.51 (br s, 0.82 H), 2.44 (m, 1 H), 2.33 (m, 1 H), 1.29-1.40 (m, 8 H). 13C NMR (100 MHz, APT, CDCl3): major diastereomer δ = 170.2, 164.2, 136.3, 135.3, 131.4, 65.7, 60.8, 43.8, 42.3, 39.7, 38.6, 37.9, 21.3, 14.2; minor diastereomer δ = 170.2, 164.2, 136.4, 135.2, 131.4, 67.4, 60.8, 44.1, 42.4, 39.5, 38.7, 38.5, 21.6, 14.2. HRMS calcd for C14H18O3: m/z = 234.1256. Found: m/z = 234.1246.
(ii) Ru-catalyzed [2+2] cycloadditions between 1 and 2f (Table
[1]
, entry 9): A mixture of norbornene 1 (159 mg, 1.69 mmol), alkyne 2f (80 mg, 0.56 mmol), and THF (0.3 mL) in an oven-dried vial was added via a cannula to an oven-dried screw-cap vial containing Cp*RuCl(COD) (weighed out from a dry box, 13.3 mg, 0.035 mmol) under nitrogen. The oven-dried vial was rinsed with THF (0.3 mL). The reaction mixture was stirred in the dark at r.t. for 72 h. The crude product was purified by column chromatography (EtOAc:hexanes = 1:19) to give an inseparable mixture of cycloadducts 3f and 4f (111 mg, 0.474 mmol, 84%, dr = 5.2:1 measured by 1H NMR and GC) as a yellow oil.
Rf = 0.40 (EtOAc:hexanes = 1:4); GC (HP-1 column): retention time for major isomer = 17.23 min, retention time for minor isomer = 17.35 min. IR (CH2Cl2): 3391 (br m), 2958 (s), 2871 (m), 1740 (m), 1721 (s)1679 (s), 1037 (s)
cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.15 (q, 0.2 H, J = 5.4 Hz), 5.09 (q, 0.8 H, J = 4.2 Hz), 4.44-4.50 (m, 1 H), 2.55 (br s, 1 H), 2.43 (m, 1 H), 2.16 (br s, 1 H), 2.12 (br s, 0.2 H), 2.02 (br s, 0.8 H), 1.57 (m, 2 H), 1.28-1.35 (m, 7 H), 1.01-1.09 (m, 3 H). 13C NMR (100 MHz, APT, CDCl3): major diastereomer δ = 168.0, 164.2, 129.0, 65.4, 60.7, 47.0, 45.5, 34.0, 33.4, 30.5, 28.0, 27.8, 21.3, 14.2; minor diastereomer
δ = 167.9, 164.2, 129.0, 67.1, 60.7, 47.6, 45.6, 34.1, 33.8, 30.4, 28.0, 21.7, 14.2. HRMS calcd for C14H20O3: m/z = 236.1412. Found: m/z = 236.1383.
(iii) Oxidation of the diastereomeric cycloadducts 3f/4f to the enantiomerically enriched product 11 (Scheme
[2]
): To a solution of the diastereomeric cycloadducts 3f/4f (58.0 mg, 0.2455 mmol) in CH2Cl2 (1.5 mL) was added pyridinium dichromate (0.1402 g, 0.3727 mmol). The reaction was stirred at r.t. for 48 h. The amount of 2 mL of Et2O was then added, and the mixture was passed through a plug of silica gel. The solvent was evaporated and the product was purified by column chromatography (EtOAc:hexanes = 3:7) to give 11 (27.0 mg, 0.1154 mmol, 47%) as a colorless oil. Rf = 0.54 (EtOAc:hexanes = 3:7). [α]D
23 -17.8 (c 0.925, CHCl3, 62 ee% determined by HPLC). IR (CH2Cl2): 2960 (s), 2873 (s), 1716 (s), 1669 (s), 1615 (m), 1366 (m), 1260 (m) cm-1. HPLC (OJ-H column, 0.75 mL/min, 1% i-PrOH/Hexane, 254 nm): major enantiomer = 7.52 min; minor enantiomer = 8.01 min. 1H NMR (400 MHz, CDCl3): δ = 4.24 (q, 2 H, J = 7.1 Hz), 2.62 (s, 2 H), 2.48 (s, 3 H), 2.23 (br s, 2 H), 1.60 (m, 2 H), 1.32 (t, 3 H, J = 7.1 Hz), 1.23 (dm, 1 H, J = 10.7 Hz), 1.12 (m, 2 H), 1.04 (dm, 1 H, J = 10.7 Hz). 13C NMR (100 MHz, APT, CDCl3): δ = 195.4, 161.4, 149.9, 139.5, 60.8, 46.42, 46.36, 33.9, 33.8, 30.4, 29.5, 28.0, 27.9, 14.1. Anal. Calcd for C14H18O3: C, 71.77; H, 7.74. Found: C, 71.98; H, 7.55.