Thorac Cardiovasc Surg 2003; 51(4): 190-195
DOI: 10.1055/s-2003-42261
Original Cardiovascular
© Georg Thieme Verlag Stuttgart · New York

The Aortomitral Angle is Suspended by the Anterior Mitral Basal “Stay” Chords

W.  A.  Goetz1 , H.-S.  Lim2 , E.  Lansac3 , P.  A.  Weber2 , D.  E.  Birnbaum1 , C.  M. G.  Duran2
  • 1Klinik für Herz-, Thorax- und herznahe Gefäßchirurgie, Klinikum der Universität Regensburg, Germany
  • 2The International Heart Institute of Montana Foundation at St. Patrick Hospital and Health Sciences Center and The University of Montana, Missoula, Montana, USA
  • 3Chirurgie Thoracique et Cardiovasculaire, Hopital Pitie-Salpetriere, Paris, France
This paper was presented at the 32nd Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, 23 - 26 February 2003 in Leipzig, Germany; Abstract ID: 16057
Further Information

Publication History

Received March 27, 2003

Publication Date:
19 September 2003 (online)

Abstract

Objectives: The function of the anterior mitral basal “stay” chords (SC) is not yet known. Collagen fiber orientation of the anterior mitral leaflet (AML) suggests that local stress is directed from papillary muscles (PM) over SC and AML to fibrous trigones (FT), maintaining the aortomitral angle (AMA). It has been shown that narrowing of AMA increases risk of systolic anterior movement (SAM). Methods: Sonomicrometry crystals were implanted in six sheep at the left ventricular (LV) apex, PM tips (M1, M2), FT (T1, T2), posterior mitral annulus (PMA), and base of aortic right coronary sinus (RCS). The retracting force of ascending aorta was measured. Results: Transection of SC resulted in an increase of distance M1-T1 and M2-T2. Consequently, the AMA narrowed at end systole by - 3.26 ± 0.85 ° (p < 0.05) and at end diastole by - 4.16 ± 1.28 ° (p < 0.05). A force of 1.8 ± 0.2 N was needed to pull the recoiling ascending aorta back to its original position. Conclusions: The elastic recoil of ascending aorta is balanced by SC, which connect PM to FT and constitute the center of the LV base. Transection of SC narrows AMA and increases the risk of SAM.

References

  • 1 Obadia J F, Casali C, Chassignolle J F, Janier M. Mitral subvalvular apparatus: different functions of primary and secondary chordae.  Circulation. 1997;  96 3124-3128
  • 2 Marcus R H, Sareli P, Pocock W A, Meyer T E, Magalhaes M P, Grieve T, Antunes M J, Barlow J B. Functional anatomy of severe mitral regurgitation in active rheumatic carditis.  Am J Cardiol. 1989;  63 577-584
  • 3 Tandler J. Handbuch der Anatomie des Menschen. Jena; Gustav Fischer 1913
  • 4 Kumar N, Kumar M, Duran C M. A revised terminology for recording surgical findings of the mitral valve.   J Heart Valve Dis. 1995;  4 70-75 , ; Discussion 76 - 77
  • 5 van Rijk-Zwikker G L, Delemarre B J, Huysmans H A. Mitral valve anatomy and morphology: relevance to mitral valve replacement and valve reconstruction.  J Card Surg. 1994;  9 255-261
  • 6 Lam J H, Ranganathan N, Wigle E D, Silver M D. Morphology of the human mitral valve. I. Chordae tendinae: a new classification.  Circulation. 1970;  41 449-458
  • 7 Timek T A, Nielsen S L, Green G R, Dagum P, Bolger A F, Daughters G T, Hasenkam J M, Ingels N B, Miller D C. Influence of anterior mitral leaflet second-order chordae on leaflet dynamics and valve competence. Discussion 541.  Ann Thorac Surg. 2001;  72 535-540
  • 8 Carpentier A. Cardiac valve surgery - the “French correction”.  J Thorac Cardiovasc Surg. 1983;  86 323-337
  • 9 Cochran R P, Kunzelman K S, Chuong C J, Sacks M S, Eberhart R C. Nondestructive analysis of mitral valve collagen fiber orientation.  ASAIO Trans. 1991;  37 M447-M448
  • 10 Obadia J F, Janier M. Second order anterior mitral leaflets play a role in preventing systolic anterior motion.  Ann Thorac Surg. 2002;  73 1689-1690 , ; Discussion 1690
  • 11 Messas E, Guerrero J L, Handschumacher M D, Conrad C, Chow C M, Sullivan S, Yoganathan A P, Levine R A. Chordal cutting: a new therapeutic approach for ischemic mitral regurgitation.  Circulation. 2001;  104 1958-1963
  • 12 Guyton A C. Textbook of Medical Physiology, 9th ed. Philadelphia, PA; WB Saunders 1996
  • 13 Dagum P, Timek T A, Green G R, Lai D, Daughters G T, Liang D H, Hayase M, Ingels N B, Miller D C. Coordinate-free analysis of mitral valve dynamics in normal and ischemic hearts.  Circulation. 2000;  102 III62-III69
  • 14 Kunzelman K S, Cochran R P. Mechanical properties of basal and marginal mitral valve chordae tendinae.  ASAIO Trans. 1990;  36 M405-M408
  • 15 Yacoub M. Anatomy of the mitral valve chordae and cusps. In: Kalmanson D (ed) The Mitral Valve. Acton, MA; Publishing Sciences Group 1976: 15-20
  • 16 Komeda M, Glasson J R, Bolger A F, Daughters G T, Ingels N B, Miller D C. Papillary muscle-left ventricular wall “complex”.  J Thorac Cardiovasc Surg. 1997;  113 292-300 , ; Discussion 300 - 301
  • 17 Nielsen S L, Green G R, Dagum P, Timek T, Bolger A F, Hasenkam J M, Ingels N B, Miller D C. Why is the Relationship between Anterior Mitral Leaflet Strut Chordae Tension and Left Ventricular Pressure During Isovolumic Contraction Not Linear?.  Circulation. 1999;  100 I-575
  • 18 Alam M, Rosenhamer G. Atrioventricular plane displacement and left ventricular function.  J Am Soc Echocardiogr. 1992;  5 427-433
  • 19 Omoto R, Matsumura M, Asano H, Kyo S, Takamoto S, Yokote Y, Wong M. Doppler ultrasound examination of prosthetic function and ventricular blood flow after mitral valve replacement.  Herz. 1986;  11 346-350
  • 20 Mihaileanu S, Mariono J P, Chauvaud S, Perier P, Forman J, Vissoat J, Julien J, Dreyfus G, Abastado P, Carpentier A. Left ventricular outflow obstruction after mitral valve repair (Carpentier's technique). Proposed mechanisms of disease.  Circulation. 1988;  78 I78-I84

Carlos M. G.  Duran, MD, PhD 

The International Heart Institute of Montana

554 West Broadway

Missoula, Montana 59802

USA

Phone: + 1/406/329-5668

Fax: + 1/406/329-5880

Email: duran@saintpatrick.org