Subscribe to RSS
DOI: 10.1055/s-2003-42366
Bedeutung der Triglyzeride für weitere metabolische Parameter bei familiärem metabolischem Syndrom
Significance of triglycerides for other metabolic parameters in the familial metabolic syndromePublication History
eingereicht: 3.4.2002
akzeptiert: 14.5.2003
Publication Date:
19 September 2003 (online)
Hintergrund und Fragestellung: Die Zusammenhänge zwischen den verschiedenen Stadien der Glukosetoleranz und metabolischen Parametern wurden in vielen Studien untersucht. Ob und in welchem Ausmaß die Triglyzeride in den verschiedenen Stadien der Glukosetoleranz weitere metabolische Parameter beeinflussen, ist unklar. Ziel unser Studie war es, die Bedeutung der Triglyzeride bei definierter Glykämielage bei Personen mit einem erhöhten familiären Risiko für metabolische Erkrankungen zu untersuchen.
Patienten und Methodik: Wir untersuchten 866 Personen (380 Männer, 486 Frauen, durchschnittliches Alter 44,4 Jahre) im Rahmen der Studie „Familiäres Metabolisches Syndrom” (FAMES). Nach dem Ergebnis eines oralen Glukosetoleranztests wurden die Probanden den verschiedenen Stadien der Glukosetoleranz zugeordnet. Abhängig von den Triglyzerid (TG)-Werten im Serum (TG < 1,7 bzw. TG ≥ 1,7 mmol/l) wurden alle Glukosetoleranzstadien nochmals in Subgruppen aufgeteilt. In diesen wurden zahlreiche metabolische Parameter wie Nüchternglukose-Konzentration, Insulinresistenz, Insulin- und Proinsulinspiegel, die Serumkonzentrationen von HDL-Cholesterin (HDL-C), LDL-Cholesterin (LDL-C), Harnsäure, HbA1c und freien Fettsäuren (FFS) bestimmt.
Ergebnisse: Bei Personen mit normaler Glukosetoleranz (NGT) ist die Hypertriglyzeridämie bereits mit weiteren Komponenten des metabolischen Syndroms assoziiert, so mit einem höheren HbA1c, höheren FFS, Proinsulin- und Insulinspiegeln sowie mit einer schlechteren Insulinsensitivität, höheren LDL-C, niedrigeren HDL-C und höheren Harnsäurespiegel. Auch bei Diabetikern mit einer Hypertriglyzeridämie fanden sich höhere FFS-, Proinsulin- und Insulinspiegel sowie ein niedrigeres HDL-C und eine ausgeprägtere Insulinresistenz.
Folgerung: Die Hypertriglyzeridämie ist in den Stadien der Glukosetoleranz und -intoleranz ein Indikator für Insulinresistenz und für erhöhte Werte der Komponenten des metabolischen Syndroms.
Background: The relationship between the various degrees of glucose tolerance and metabolic parameters have already been examined in various studies. Whether and to what extent the triglycerides (TG) affect other metabolic parameters in the different degrees of glucose tolerance is not certain. We therefore studied the importance of the triglycerides within a defined glycemic state in patients with an elevated familial risk for metabolic diseases.
Methods: We examined 866 patients (380 men, 486 women, mean age 44,4 years) in the „Familial Metabolic Syndrome Study” (FAMES). The patients were assigned to various degrees of glucose tolerance, according to the result of an oral glucose tolerance test. All degrees were divided into subgroups in respect of the triglyceride level (TG < 1,7 or TG ≥ 1,7 mmol/l). In these subgroups we measured various metabolic parameters like fasting glucose, insulin resistance, insulin and proinsulin levels, HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), uric acid, HbA1c, and free fatty acids (FFA).
Results: In patients with normal glucose tolerance the hypertriglyceridemia is already associated with other components of the metabolic syndrome like elevated HbA1c, free fatty acids, proinsulin and insulin levels, worsened insulin sensitivity, elevated uric acid and LDL-C levels as well as a lowered HDL-C level. The patients with diabetes and hypertriglyceridemia also showed higher levels of FFA, proinsulin and insulin, a lower HDL-C level and a more prominent insulin resistance.
Conclusion: Hypertriglyceridemia is an indicator for insulin resistance and elevated levels of other components of the metabolic syndrome within the various degrees of glucose tolerance.
Literatur
- 1 Alberti K GMM. Impaired glucose tolerance: what are the clinical implications?. Diabetes Res Clin Pract. 1998; 40 S3-S8
- 2 Boden G, Chen X, DeSantis R A, Kendrick Z. Effects of age and body fat on insulin resistance in healthy men. Diabetes Care. 1993; 16 728-733
- 3 Bonora E, Kiechl S, Willeit J. et al . Prevalence of insulin resistance in metabolic disorders. The Bruneck Study. Diabetes. 1998; 47 1643-1649
- 4 Boyko E J, De Courten M, Zimmet P Z, Chitson P, Tuomilehto J, Alberti K GMM. Features of the metabolic syndrome predict higher risk of diabetes and impaired glucose tolerance. Diabetes Care. 2000; 23 1242-1248
- 5 Byrne C D, Wareham N J, Brown D C. et al . Hypertriglyceridaemia in subjects with normal and abnormal glucose tolerance: relative contributions of insulin secretion, insulin resistance and suppression of plasma non-esterified fatty acids. Diabetologia. 1994; 37 889-896
- 6 Byrne C D, Wareham N J, Hales C N. The role of insulin and proinsulin in the regulation of triglyceride metabolism. Exp Clin Endocrinol Diabetes. 1997; 105 29-35 (Suppl 2))
- 7 Connelly P W, Petrasovits A, Stachenko S, MacLean D R, Little J A, Chockalingam A.. Canadian Heart Health Surveys Research Group . Prevalence of high plasma triglyceride combined with low HDL-C levels and its association with smoking, hypertension, obesity, diabetes, sedentariness and LDL-C levels in Canadian population. Can J Cardiol. 1999; 15 428-433
- 8 DeFronzo R A. Lilly lecture 1987: The Triumvirate. β-cell, Muscle, Liver. A collusion responsible for NIDDM. Diabetes. 1988; 37 667-687
- 9 Dresner A, Laurent D, Marcucci M. et al . Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999; 103 253-259
- 10 Facchini F, Chen Y -DI, Hollenbeck C B, Reaven G M. Relationship between resistance to insulin-mediated glucose uptake, urinary uric acid clearance, and plasma uric acid concentration. JAMA. 1991; 266 3008-3011
- 11 Frontini M G, Srinivasan S R, Elkasabany A, Berenson G S. Distribution and cardiovascular risk correlates of serum triglycerides in young adults from a biracial community. The Bogalusa Heart Study. Atherosclerosis. 2001; 155 201-209
- 12 Göke B. Implications of blood glucose, insulin resistance and β-cell function in impaired glucose tolerance. Diabetes Res Clin Pract. 1998; 40 S15-S20
- 13 Groop L, Ekstrand A, Forsblom C. et al . Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993; 36 642-47
- 14 Haffner S, D’Agostino R, Mykkänen L. et al . Insulin sensitivity in subjects with type 2 diabetes. Relationship to cardiovascular risk factors: the insulin resistance atherosclerosis study. Diabetes Care. 1999; 22 562-568
- 15 Hanefeld M, Leonhardt W. Das metabolische Syndrom. Dtsch Gesundh Wesen. 1980; 36 545-551
- 16 Hanley A J, McKeown-Eyssen G, Harris S B. et al . Cross-sectional and prospective associations between proinsulin and cardiovascular disease risk factors in a population experiencing rapid cultural transition. Diabetes Care. 2001; 24 1240-1247
- 17 Kopf D, Lehnert H. Prädiktive Untersuchungen bei phänotypisch gesunden Nachkommen von Patienten mit einem metabolischen Syndrom. Dtsch Med Wochenschr. 2001; 126 235-240
- 18 Kvapil M, Stolba P, Wichterle D, Dvorak P. Insulin resistance and compensatory insulin secretion in middle-aged persons with hypertriglyceridemia. Ann N Y Acad Sci. 1993; 683 295-301
- 19 Laakso M. Dyslipidaemias, insulin resistance and atherosclerosis. Ann Med. 1992; 24 505-509
- 20 Laws A, Hoen H M, Selby J V, Saad M F, Haffner S M, Howard B V. Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status. Relation to plasma triglyceride and apolipoprotein B concentrations. Insulin Resistance Atherosclerosis Study (IRAS) Investigators. Arterioscler Thromb Vasc Biol. 1997; 17 64-71
- 21 Matthews D R, Hosker J P, Rudenski A S, Naylor B A, Treacher D F, Turner R C. Homeostasis Model Assessment insulin resistance and β-cell-function from fasting plasma glucose and insulin concentration in man. Diabetologia. 1985; 28 412-419
- 22 Mykkänen L, Haffner S M, Hales C N, Ronnemaa T, Laakso M. The relation of proinsulin, insulin and proinsulin-to-insulin ratio to insulin sensitivity and acute insulin response in normoglycemic subjects. Diabetes. 1997; 46 1990-1995
- 23 Mykkänen L, Kuusisto J, Pyörälä K, Laakso M. Cardiovascular disease risk factors as predictors of Type 2 (non-insulin-dependent) diabetes mellitus in elderly subjects. Diabetologia. 1993; 36 553-559
- 24 Mykkänen L, Zaccaro D J, Hales C N, Festa A, Haffner S M. The relation of proinsulin and insulin to insulin sensitivity and acute insulin response in subjects with newly diagnosed type II diabetes: the insulin resistance atherosclerosis study. Diabetologia. 1999; 42 1060-1066
- 25 Nestel P J. Relationship between plasma triglycerides and removal of chylomicrons. J Clin Invest. 1964; 43 943-949
- 26 Nijpels G. Determinants for progression from impaired glucose tolerance to non-insulin-dependent diabetes mellitus. Eur J Clin Invest. 1998; 28 8-13
- 27 O’Doherty R, Stein D, Foley J. Insulin resistance. Diabetologia. 1997; 40 B10-B15
- 28 Ohni M, Mizukawa S, Nakajima K, Yamamoto M, Hata Y. Insulin resistance and hyperlipidemia in the elderly. Nippon Ronen Igakkai Zasshi. 1997; 34 379-388
- 29 Reaven G M. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?. Diabetes Care. 1984; 7 17-24
- 30 Reaven G M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988; 37 1595-1607
- 31 Reaven G M, Chen Y D, Hollenbeck C B, Sheu W H, Ostrega D, Polonsky K S. Plasma insulin, C-peptide, and proinsulin concentrations in obese and nonobese individuals with varying degrees of glucose tolerance. J Clin Endocrinol Metab. 1993; 76 44-48
- 32 Reaven G M. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995; 75 473-486
- 33 Stern M P, Morales P A, Valdez R A. et al . Predicting diabetes. Moving beyond impaired glucose tolerance. Diabetes. 1993; 42 706-714
- 34 Taskinen M -R, Smith U. Lipid disorders in NIDDM: implications for treatment. J Int Med. 1998; 244 361-370
- 35 The Expert Committee of the Diagnosis and Classification of Diabetes Mellitus . Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care. 2000; 22 S4-S19 (Suppl 1))
- 36 Wasada T, Katsumori K, Saeki A, Iwatani M. Hyperuricemia and insulin resistance. Nippon Rinsho. 1996; 54 3293-3296
- 37 Wilson D E, Chan I -F, Buchi K N, Horton S C. Postchallenge plasma lipoproteins retinoids: chylomicron remnants in endogenous hypertriglyceridemia. Metabolism. 1985; 34 551-558
- 38 Yang W, Xing X, Lin H. Baseline hypertriglyceridemia, a risk factor for non-insulin dependent diabetes mellitus: a 6-year follow-up study of 432 nondiabetics. Zhonghua Nei Ke Za Zhi. 1995; 34 583-586
- 39 Zavaroni I, Dall’Aglio E, Alpi O. et al . Evidence for an independent relationship between plasma insulin and concentration of high density lipoprotein cholesterol and triglyceride. Atherosclerosis. 1985; 55 259-266
- 40 Zavaroni I, Mazza S, Fantuzzi M. et al . Changes in insulin and lipid metabolism in males with asymptomatic hyperuricemia. J Int Med. 1993; 234 24-30
Dr. med. Wolfgang Metzler
Universitätsklinikum Schleswig-Holstein, Campus Kiel, 1. Medizinische Klinik
Schittenhelmstraße 12
24105 Kiel
Phone: 0431/5971393
Fax: 0431/5971302
Email: wmetzler@hotmail.com