Subscribe to RSS
DOI: 10.1055/s-2003-42785
© Georg Thieme Verlag Stuttgart · New York
The Bioconversion Process of Deoxypodophyllotoxin with Linum flavum Cell Cultures
Publication History
Received: December 20, 2002
Accepted: April 12, 2003
Publication Date:
06 October 2003 (online)
Abstract
The in vitro cell suspension culture of Linum flavum is able to convert high amounts of the 2,7′-cyclolignan deoxypodophyllotoxin into 6-methoxypodophyllotoxin 7-O-glucoside. We studied this conversion in detail by monitoring the intermediates and side-products after feeding different concentrations of deoxypodophyllotoxin. At a low concentration (0.1 mM) deoxypodophyllotoxin is rapidly converted into 6-methoxypodophyllotoxin 7-O-glucoside, 6-methoxypodophyllotoxin and traces of β-peltatin and podophyllotoxin. The feeding of 0.5 and 2.0 mM also shows a rapid conversion into 6-methoxypodophyllotoxin 7-O-glucoside, but a delayed formation of 6-methoxypodophyllotoxin and β-peltatin. By using different extraction methods we delivered proof in favour of the hypothesis that a part of the deoxypodophyllotoxin after uptake is temporarily stored as β-peltatin glucoside.
Key words
Linum flavum - Linaceae - bioconversion - deoxypodophyllotoxin - lignans - podophyllotoxin
References
-
1 Lewis N G, Davin L B. Lignans: Biosynthesis and function. In: Sankawa U, editor
Polyketides and other secondary metabolites including fatty acids and their derivatives . Amsterdam; Elsevier 1999: 639-712 - 2 Gross G. Clinical diagnosis and management of anogenital warts and papillomavirus-associated lesions. Hautarzt. 2001; 52 6-17
- 3 Imbert T F. Discovery of podophyllotoxins. Biochimie. 1998; 80 207-22
- 4 Gudmundsdottir E S, Jonsson H. CPH 82 (Reumacon®) in refractory inflammatory arthritis. Scandinavian Journal of Rheumatology. 2000; 29 323-5
- 5 Van Uden W, Bos J A, Boeke G M, Woerdenbag H J, Pras N. The large scale isolation of deoxypodophyllotoxin from rhizomes of Anthriscus sylvestris followed by its bioconversion into 5-methoxypodophyllotoxin β-d-glucoside by cell cultures of Linum flavum . Journal of Natural Products. 1997; 60 401-3
- 6 San Feliciano A, Gordaliza M, Miguel del Corral J M, Castro M A, Garcia-Gravalos M D. et al . Antineoplastic and antiviral activities of some cyclolignans. Planta Medica. 1993; 59 246-9
- 7 Molog G A, Empt U, Petersen M, Van Uden W, Pras N. et al . Deoxypodophyllotoxin 6-hydroxylase, a cytochrome P450 monooxygenase from cell cultures of Linum flavum involved in the biosynthesis of cytotoxic lignans. Planta. 2001; 214 288-94
- 8 Medarde M, Pelaez-Lamamie de Clairac R, Tome F, Lopez J L, San Feliciano A. Heterolignanolides: Antitumor activity of furyl, thienyl, and pyridyl analogs of lignanolides. Archiv der Pharmazie. 1995; 328 403-7
- 9 Koulman A, Bos R, Medarde M, Pras N, Quax W J. A fast and simple GC-MS method for lignan profiling in Anthriscus sylvestris and biosynthetically related plant species. Planta Medica. 2001; 67 858-62
- 10 Canel C, Dayan F E, Ganzera M, Khan I A, Rimando A. et al . High yield of podophyllotoxin from leaves of Podophyllum peltatum by in situ conversion of podophyllotoxin 4-O-β-D-glucopyranoside. Planta Medica. 2000; 67 97-8
- 11 Xu J F, Su Z G, Feng P S. Activity of tyrosol glucosyltransferase and improved salidroside production through biotransformation of tyrosol in Rhodiola sachalinensis cell cultures. Journal of Biotechnology. 1998; 61 69-73
-
12 Pras N, Woerdenbag H J. Production of Secondary Metabolites by Bioconversion. In: Ramawat KG and Mérillon JM, editors
Biotechnology; Secondary Metabolites . Enfield, NH; Science Publishers, Inc 1999: pp. 265-303 - 13 Xia Z -Q, Costa M A, Proctor J, Davin L B, Lewis N G. Dirigent-mediated podophyllotoxin biosynthesis in Linum flavum and Podophyllum peltatum . Phytochemistry. 2000; 55 537-49
Albert Koulman
Department of Pharmaceutical Biology
GUIDE (Groningen University Institute for Drug Exploration)
University of Groningen
A. Deusinglaan 1
9713 AV Groningen
The Netherlands
Phone: +031-50-36333363
Fax: +031-50-3633000
Email: A.Koulman@farm.rug.nl