Planta Med 2003; 69(8): 696-700
DOI: 10.1055/s-2003-42790
Original Paper
Pharmacology
© Georg Thieme Verlag Stuttgart · New York

Suppression of Inducible Nitric Oxide Production by Indole and Isothiocyanate Derivatives from Brassica Plants in Stimulated Macrophages

Yue-Hwa Chen1 , Huey-Jing Dai1 , Hsiao-Pei Chang1
  • 1Taipei Medical University, Graduate Institute of Nutrition and Health Sciences, Taipei, Taiwan, R.O.C.
This work was supported by a grant from the National Science Council (NSC 89-2320-B-038-053), Taiwan, ROC
Further Information

Publication History

Received: December 18, 2002

Accepted: April 21, 2003

Publication Date:
06 October 2003 (online)

Abstract

In this study, the effects of bioactive compounds derived from vegetables of the Brassica genus (Brassicaceae) including 2-phenylethyl isothiocyanate (PEITC), indole-3-carbinol (I3C), and indolo[3,2-b]carbazole (ICZ), on the inhibition of NO production in RAW 264.7 cells were explored. The results indicated that PEITC and I3C inhibited lipopolysaccharide (LPS)- and interferon-γ (IFN-γ)-induced NO production in RAW 264.7 cells, and this inhibition was in accordance with lowering the expression of iNOS protein and mRNA. On the contrary, ICZ, a derivative of I3C, had no significant effect on the stimulated NO production. In conclusion, the Brassica plants derivatives, PEITC and, to a lesser extent, I3C inhibit the LPS/IFN-γ-induced NO production by lowering iNOS protein and mRNA expression in RAW 264.7 cells, in which the PEITC had a more potent inhibitory effect. Nevertheless, ICZ exhibits no inhibitory effect on the activated NO production (Indole-3-carbinol = indole-3-methanol).

References

  • 1 Davis K L, Martin E, Turko I V, Murad F. Novel effects of nitric oxide.  Annu Rev Pharmacol Toxicol. 2001;  41 203-36
  • 2 Kroncke K D, Fehsel K, Kolb-Bachofen V. Inducible nitric oxide synthase in human diseases.  Clin Exp Immunol. 1998;  113 147-56
  • 3 Tamir S, Tannenbaum S R. The role of nitric oxide (NO) in the carcinogenic process.  Biochim Biophys Acta. 1996;  1288 F31-6
  • 4 Graham S, Mettlin C. Diet and colon cancer.  Am J Epidemiol. 1979;  109 1-20
  • 5 Stoewsand G S. Bioactive organosulfur phytochemicals in Brassica oleracea vegetables - a review.  Food Chem Toxicol. 1995;  33 537-43
  • 6 McDanell R, McLean A EM, Hanley A B, Heaney R K, Fenwick G R. Chemical and biological properties of indole glucosinolates (glucobrassicins): a review.  Food Chem Toxicol. 1988;  26 59-70
  • 7 Kwon C -S, Grose K R, Riby J, Chen Y -H, Bjeldanes L F. In vivo production and enzyme-inducing activity of indolo[3,2-b]carbazole.  J Agric Food Chem. 1994;  42 2536-40
  • 8 Zhang Y, Talalay P. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms.  Cancer Res. 1994;  54(suppl) 1976S-81S
  • 9 Robinson B. The Fischer indolisation of cyclohexane-1,4-dione bisphenylhydrazone. J Chem Soc 1963: 3097-9
  • 10 Privat C, Lantoine F, Bdeioui F, van Brussel E M, Devynck J, Devynck M A. Nitric oxide production by endothelial cells: comparison of three methods of quantification.  Life Sci. 1997;  61 1193-202
  • 11 Noda T, Amano F. Differences in nitric oxide synthase activity in a macrophage-like cell line, RAW 264.7 cells, treated with lipopolysaccharide (LPS) in the presence or absence of interferon-γ (IFN-γ): possible heterogeneity of iNOS activity.  J Biochem. 1997;  121 38-46
  • 12 Tsai S H, Lin-Shiau S Y, Lin J K. Suppression of nitric oxide synthase and the down-regulation of the activation of NFκB in macrophages by resveratrol.  Brit J Pharmacol. 1999;  126 673-80
  • 13 Bradfield C A, Bjeldanes L F. Effect of dietary indole-3-carbinol on intestinal and hepatic monooxygenase, glutathione S-transferase and epoxide hydrolase activities in the rat.  Food Chem Toxicol. 1984;  22 977-82
  • 14 Guo Z, Smith T J, Wang E, Sadrieh N, Ma Q, Thomas P E. et al . Effects of phenethyl isothiocyanate, a carcinogenesis inhibitor, on xenobiotic-metabolizing enzymes and nitrosamine metabolism in rats.  Carcinogenesis. 1992;  13 2205-10
  • 15 Bonnesen C, Eggleston I M, Hayes J D. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines.  Cancer Res. 2001;  61 6120-30
  • 16 Ge X, Fares F A, Yannai S. Induction of apoptosis in MCF-7 cells by indole-3-carbinol is independent of p53 and Bax.  Anticancer Res. 1999;  19 3199-204
  • 17 Ohshima H, Bartsch H. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis.  Mutation Res. 1994;  305 253-64
  • 18 Grose K R, Bjeldanes L F. Oligomerization of indole-3-carbinol in aqueous acid.  Chem Res Toxicol. 1992;  5 188-93
  • 19 Bjeldanes L F, Kim J -Y, Grose K R, Bartholomew J C, Bradfield C A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin.  Proc Natl Acad Sci USA. 1991;  88 9543-7
  • 20 Liu H, Wormke M, Safe S H, Bjeldanes L F. Indolo[3,2-b]carbazole: a dietary-derived factor that exhibits both antiestrogenic and estrogenic activity.  J Natl Cancer Inst. 1994;  86 1758-65

Dr. Yue-Hwa Chen

Taipei Medical University

Graduate Institute of Nutrition and Health Sciences

250 Wu-Hsing Street

Taipei 110

Taiwan

Republic of China

Phone: +886-2-27361661 ext. 6555 ext. 118

Fax: +886-2-27373112

Email: yuehwa@tmu.edu.tw